AlgebraPackage(R, A)¶
naalg.spad line 592 [edit on github]
AlgebraPackage assembles a variety of useful functions for general algebras.
- basis: Vector A -> Vector A if R has EuclideanDomain
basis(va)selects a basis from the elements ofva.
- basisOfCenter: () -> List A
basisOfCenter()returns a basis of the space of allxofAsatisfyingcommutator(x, a) = 0andassociator(x, a, b) = associator(a, x, b) = associator(a, b, x) = 0for alla,binA.
- basisOfCentroid: () -> List Matrix R
basisOfCentroid()returns a basis of the centroid, i.e. the endomorphism ring ofAconsidered as(A, A)-bimodule.
- basisOfCommutingElements: () -> List A
basisOfCommutingElements()returns a basis of the space of allxofAsatisfying0 = commutator(x, a)for allainA.
- basisOfLeftAnnihilator: A -> List A
basisOfLeftAnnihilator(a)returns a basis of the space of allxofAsatisfying0 = x*a.
- basisOfLeftNucleus: () -> List A
basisOfLeftNucleus()returns a basis of the space of allxofAsatisfying0 = associator(x, a, b)for alla,binA.
- basisOfLeftNucloid: () -> List Matrix R
basisOfLeftNucloid()returns a basis of the space of endomorphisms ofAas right module. Note: left nucloid coincides with left nucleus ifAhas a unit.
- basisOfMiddleNucleus: () -> List A
basisOfMiddleNucleus()returns a basis of the space of allxofAsatisfying0 = associator(a, x, b)for alla,binA.
- basisOfNucleus: () -> List A
basisOfNucleus()returns a basis of the space of allxofAsatisfyingassociator(x, a, b) = associator(a, x, b) = associator(a, b, x) = 0for alla,binA.
- basisOfRightAnnihilator: A -> List A
basisOfRightAnnihilator(a)returns a basis of the space of allxofAsatisfying0 = a*x.
- basisOfRightNucleus: () -> List A
basisOfRightNucleus()returns a basis of the space of allxofAsatisfying0 = associator(a, b, x)for alla,binA.
- basisOfRightNucloid: () -> List Matrix R
basisOfRightNucloid()returns a basis of the space of endomorphisms ofAas left module. Note: right nucloid coincides with right nucleus ifAhas a unit.
- biRank: A -> NonNegativeInteger
biRank(x)determines the number of linearly independent elements inx,x*bi,bi*x,bi*x*bj,i, j=1, ..., n, whereb=[b1, ..., bn]is a basis. Note: ifAhas a unit, then doubleRank, weakBiRank and biRank coincide.
- doubleRank: A -> NonNegativeInteger
doubleRank(x)determines the number of linearly independent elements inb1*x, …,x*bn, whereb=[b1, ..., bn]is a basis.
- leftRank: A -> NonNegativeInteger
leftRank(x)determines the number of linearly independent elements inx*b1, …,x*bn, whereb=[b1, ..., bn]is a basis.
- radicalOfLeftTraceForm: () -> List A
radicalOfLeftTraceForm()returns basis for null space ofleftTraceMatrix(), if the algebra is associative, alternative or a Jordan algebra, then this space equals the radical (maximal nil ideal) of the algebra.
- rightRank: A -> NonNegativeInteger
rightRank(x)determines the number of linearly independent elements inb1*x, …,bn*x, whereb=[b1, ..., bn]is a basis.
- weakBiRank: A -> NonNegativeInteger
weakBiRank(x)determines the number of linearly independent elements in thebi*x*bj,i, j=1, ..., n, whereb=[b1, ..., bn]is a basis.