BrillhartTests UPΒΆ
brill.spad line 1 [edit on github]
Author: Frederic Lehobey, James H. Davenport Date Created: 28 June 1994 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart, Note on Irreducibility Testing, Mathematics of Computation, vol. 35, num. 35, Oct. 1980, 1379-1381 [2] James Davenport, On Brillhart Irreducibility. To appear. [3] John Brillhart, On the Euler and Bernoulli polynomials, J. Reine Angew. Math., v. 234, (1969), pp. 45-64
- brillhartIrreducible?: (UP, Boolean) -> Boolean
brillhartIrreducible?(p, noLinears)returnstrueifpcan be shown to be irreducible by a remark of Brillhart,falseelse. If noLinears istrue, we are being toldphas no linear factorsfalsedoes not mean thatpis reducible.
- brillhartIrreducible?: UP -> Boolean
brillhartIrreducible?(p)returnstrueifpcan be shown to be irreducible by a remark of Brillhart,falseis inconclusive.
- brillhartTrials: () -> NonNegativeInteger
brillhartTrials()returns the number of tests in brillhartIrreducible?.
- brillhartTrials: NonNegativeInteger -> NonNegativeInteger
brillhartTrials(n)sets tonthe number of tests in brillhartIrreducible? and returns the previous value.
- noLinearFactor?: UP -> Boolean
noLinearFactor?(p)returnstrueifpcan be shown to have no linear factor by a theorem of Lehmer,falseelse.Iinsist on the fact thatfalsedoes not mean thatphas a linear factor.