CombinatorialFunction(R, F)¶
combfunc.spad line 29 [edit on github]
R: Join(Comparable, IntegralDomain)
F: FunctionSpace R
Provides combinatorial functions over an integral domain.
- ^: (F, F) -> F
a ^ breturns the formal exponential a^b.
- belong?: BasicOperator -> Boolean
belong?(op)returnstrueifopis a combinatorial operator.
- binomial: (F, F) -> F
binomial(n, r)returns the number of subsets ofrobjects taken amongnobjects, i.e.n!/(r!* (n-r)!).
- factorial: F -> F
factorial(n)returns the factorial ofn, i.e.n!.
- factorials: (F, Symbol) -> F
factorials(f, x)rewrites the permutations and binomials infinvolvingxin terms of factorials.
- factorials: F -> F
factorials(f)rewrites the permutations and binomials infin terms of factorials.
- iibinom: List F -> F
iibinom(l)should be local but conditional.
- iidprod: List F -> F
iidprod(l)should be local but conditional.
- iidsum: List F -> F
iidsum(l)should be local but conditional.
- iifact: F -> F
iifact(x)should be local but conditional.
- iiperm: List F -> F
iiperm(l)should be local but conditional.
- iipow: List F -> F
iipow(l)should be local but conditional.
- ipow: List F -> F
ipow(l)should be local but conditional.
- operator: BasicOperator -> BasicOperator
operator(op)returns a copy ofopwith the domain-dependent properties appropriate forF; error ifopis not a combinatorial operator.
- permutation: (F, F) -> F
permutation(n, r)returns the number of permutations ofnobjects takenrat a time, i.e.n!/(n-r)!.
- product: (F, SegmentBinding F) -> F
product(f(n), n = a..b)returnsf(a) * … *f(b) as a formal product.
- product: (F, Symbol) -> F
product(f(n), n)returns the formal productP(n) which verifiesP(n+1)/P(n) =f(n).
- summation: (F, SegmentBinding F) -> F
summation(f(n), n = a..b)returnsf(a) + … +f(b) as a formal sum.
- summation: (F, Symbol) -> F
summation(f(n), n)returns the formal sumS(n) which verifiesS(n+1) -S(n) =f(n).