CoordinateSystems RΒΆ
coordsys.spad line 1 [edit on github]
R: Join(Field, TranscendentalFunctionCategory, RadicalCategory)
CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.
- bipolar: R -> Point R -> Point R
bipolar(a)transforms from bipolar coordinates to Cartesian coordinates:bipolar(a)is a function which will map the point(u, v)tox = a*sinh(v)/(cosh(v)-cos(u)),y = a*sin(u)/(cosh(v)-cos(u)).
- bipolarCylindrical: R -> Point R -> Point R
bipolarCylindrical(a)transforms from bipolar cylindrical coordinates to Cartesian coordinates:bipolarCylindrical(a)is a function which++will map the point(u, v, z)tox = a*sinh(v)/(cosh(v)-cos(u)),y = a*sin(u)/(cosh(v)-cos(u)),z.
- conical: (R, R) -> Point R -> Point R
conical(a, b)transforms from conical coordinates to Cartesian coordinates:conical(a, b)is a function which will map the point(lambda, mu, nu)tox = lambda*mu*nu/(a*b),y = lambda/a*sqrt((mu^2-a^2)*(nu^2-a^2)/(a^2-b^2)),z = lambda/b*sqrt((mu^2-b^2)*(nu^2-b^2)/(b^2-a^2)).
- cylindrical: Point R -> Point R
cylindrical(pt)transformsptfrom polar coordinates to Cartesian coordinates: the function produced will map the point(r, theta, z)tox = r * cos(theta),y = r * sin(theta),z.
- elliptic: R -> Point R -> Point R
elliptic(a)transforms from elliptic coordinates to Cartesian coordinates:elliptic(a)is a function which will map the point(u, v)tox = a*cosh(u)*cos(v),y = a*sinh(u)*sin(v).
- ellipticCylindrical: R -> Point R -> Point R
ellipticCylindrical(a)transforms from elliptic cylindrical coordinates to Cartesian coordinates:ellipticCylindrical(a)is a function which will map the point(u, v, z)tox = a*cosh(u)*cos(v),y = a*sinh(u)*sin(v),z.
- oblateSpheroidal: R -> Point R -> Point R
oblateSpheroidal(a)transforms from oblate spheroidal coordinates to Cartesian coordinates:oblateSpheroidal(a)is a function which will map the point(xi, eta, phi)tox = a*sinh(xi)*sin(eta)*cos(phi),y = a*sinh(xi)*sin(eta)*sin(phi),z = a*cosh(xi)*cos(eta).
- parabolic: Point R -> Point R
parabolic(pt)transformsptfrom parabolic coordinates to Cartesian coordinates: the function produced will map the point(u, v)tox = 1/2*(u^2 - v^2),y = u*v.
- parabolicCylindrical: Point R -> Point R
parabolicCylindrical(pt)transformsptfrom parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point(u, v, z)tox = 1/2*(u^2 - v^2),y = u*v,z.
- paraboloidal: Point R -> Point R
paraboloidal(pt)transformsptfrom paraboloidal coordinates to Cartesian coordinates: the function produced will map the point(u, v, phi)tox = u*v*cos(phi),y = u*v*sin(phi),z = 1/2 * (u^2 - v^2).
- polar: Point R -> Point R
polar(pt)transformsptfrom polar coordinates to Cartesian coordinates: the function produced will map the point(r, theta)tox = r * cos(theta),y = r * sin(theta).
- prolateSpheroidal: R -> Point R -> Point R
prolateSpheroidal(a)transforms from prolate spheroidal coordinates to Cartesian coordinates:prolateSpheroidal(a)is a function which will map the point(xi, eta, phi)tox = a*sinh(xi)*sin(eta)*cos(phi),y = a*sinh(xi)*sin(eta)*sin(phi),z = a*cosh(xi)*cos(eta).