Distribution R¶
distro.spad line 694 [edit on github]
Domain for distributions formally given by moments. moments and different kinds of cumulants are stored in streams and computed on demand.
- 0: %
from DistributionCategory R
- ^: (%, PositiveInteger) -> %
from DistributionCategory R
- booleanConvolution: (%, %) -> %
from DistributionCategory R
- booleanCumulant: (%, PositiveInteger) -> R
from DistributionCategory R
- booleanCumulantFromJacobi: (Integer, Sequence R, Sequence R) -> R
booleanCumulantFromJacobi(n, aa, bb)computes thenth Boolean cumulant from the given Jacobiparametersaaandbb.
- booleanCumulants: % -> Sequence R
from DistributionCategory R
- classicalConvolution: (%, %) -> %
from DistributionCategory R
- classicalCumulant: (%, PositiveInteger) -> R
from DistributionCategory R
- classicalCumulants: % -> Sequence R
from DistributionCategory R
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- construct: (Sequence R, Sequence R, Sequence R, Sequence R) -> %
construct(mom, ccum, fcum, bcum)constructs a distribution with momentsmom, classical cumulantsccum, free cumulantsfcumand boolean cumulantsbcum. The user must make sure that these are consistent, otherwise the results are unpredictable!
- distributionByBooleanCumulants: Sequence R -> %
distributionByBooleanCumulants(bb)initiates a distribution with given Boolean cumulantsbb.
- distributionByBooleanCumulants: Stream R -> %
distributionByBooleanCumulants(bb)initiates a distribution with given Boolean cumulantsbb.
- distributionByClassicalCumulants: Sequence R -> %
distributionByEvenMoments(kk)initiates a distribution with given classical cumulantskk.
- distributionByClassicalCumulants: Stream R -> %
distributionByEvenMoments(kk)initiates a distribution with given classical cumulantskk.
- distributionByEvenMoments: Sequence R -> %
distributionByEvenMoments(mm)initiates a distribution with given even momentsmmand odd moments zero.
- distributionByEvenMoments: Stream R -> %
distributionByEvenMoments(mm)initiates a distribution with given even momentsmmand odd moments zero.
- distributionByFreeCumulants: Sequence R -> %
distributionByFreeCumulants(cc)initiates a distribution with given free cumulantscc.
- distributionByFreeCumulants: Stream R -> %
distributionByFreeCumulants(cc)initiates a distribution with given free cumulantscc.
- distributionByJacobiParameters: (Sequence R, Sequence R) -> %
distributionByJacobiParameters(aa, bb)initiates a distribution with given Jacobi parameters[aa, bb].
- distributionByJacobiParameters: (Stream R, Stream R) -> %
distributionByJacobiParameters(aa, bb)initiates a distribution with given Jacobi parameters[aa, bb].
- distributionByMoments: Sequence R -> %
distributionByMoments(mm)initiates a distribution with given momentsmm.
- distributionByMoments: Stream R -> %
distributionByMoments(mm)initiates a distribution with given momentsmm.
- distributionByMonotoneCumulants: Sequence R -> % if R has Algebra Fraction Integer
distributionByMonotoneCumulants(hh)initiates a distribution with given monotone cumulantshh.
- distributionByMonotoneCumulants: Stream R -> % if R has Algebra Fraction Integer
distributionByMonotoneCumulants(hh)initiates a distribution with given monotone cumulantshh.
- distributionBySTransform: (Fraction Integer, Fraction Integer, Sequence R) -> % if R has Algebra Fraction Integer
distributionBySTransform(series)initiates a distribution with givenS-transformseries.
- distributionBySTransform: Record(puiseux: Fraction Integer, laurent: Fraction Integer, coef: Sequence R) -> % if R has Algebra Fraction Integer
distributionBySTransform(series)initiates a distribution with givenS-transformseries.
- freeConvolution: (%, %) -> %
from DistributionCategory R
- freeCumulant: (%, PositiveInteger) -> R
from DistributionCategory R
- freeCumulants: % -> Sequence R
from DistributionCategory R
- freeMultiplicativeConvolution: (%, %) -> % if R has Algebra Fraction Integer
freeMultiplicativeConvolution(mu, nu)computes the free multiplicative convolution of the distributionsmuandnu.
- hankelDeterminants: % -> Stream R
from DistributionCategory R
- jacobiParameters: % -> Record(an: Stream Fraction R, bn: Stream Fraction R) if R hasn’t Field and R has IntegralDomain
from DistributionCategory R
- jacobiParameters: % -> Record(an: Stream R, bn: Stream R) if R has Field
from DistributionCategory R
- latex: % -> String
from SetCategory
- moment: (%, NonNegativeInteger) -> R
from DistributionCategory R
- moments: % -> Sequence R
from DistributionCategory R
- monotoneConvolution: (%, %) -> %
from DistributionCategory R
- monotoneCumulants: % -> Sequence R if R has Algebra Fraction Integer
from DistributionCategory R
- orthogonalConvolution: (%, %) -> %
from DistributionCategory R
- orthogonalPolynomials: % -> Stream SparseUnivariatePolynomial Fraction R if R hasn’t Field and R has IntegralDomain
from DistributionCategory R
- orthogonalPolynomials: % -> Stream SparseUnivariatePolynomial R if R has Field
from DistributionCategory R
- subordinationConvolution: (%, %) -> %
from DistributionCategory R