ElementaryFunctionDefiniteIntegration(R, F)¶
defintef.spad line 1 [edit on github]
R: Join(PolynomialFactorizationExplicit, Comparable, CharacteristicZero, RetractableTo Integer, LinearlyExplicitOver Integer)
F: Join(TranscendentalFunctionCategory, PrimitiveFunctionCategory, AlgebraicallyClosedFunctionSpace R)
ElementaryFunctionDefiniteIntegration provides functions to compute definite integrals of elementary functions.
- innerint: (F, Symbol, OrderedCompletion F, OrderedCompletion F, Boolean) -> Union(f1: OrderedCompletion F, f2: List OrderedCompletion F, fail: failed, pole: potentialPole)
innerint(f, x, a, b, ignore?)should be local but conditional
- integrate: (F, SegmentBinding OrderedCompletion F) -> Union(f1: OrderedCompletion F, f2: List OrderedCompletion F, fail: failed, pole: potentialPole)
integrate(f, x = a..b)returns the integral off(x)dxfrom a tob. Error: iffhas a pole forxbetween a andb.
- integrate: (F, SegmentBinding OrderedCompletion F, String) -> Union(f1: OrderedCompletion F, f2: List OrderedCompletion F, fail: failed, pole: potentialPole)
integrate(f, x = a..b, "noPole")returns the integral off(x)dxfrom a tob. If it is not possible to check whetherfhas a pole forxbetween a andb(because of parameters), then this function will assume thatfhas no such pole. Error: iffhas a pole forxbetween a andbor if the last argument is not “noPole”.