FreeLieAlgebra(VarSet, R)ΒΆ
xlpoly.spad line 325 [edit on github]
VarSet: OrderedSet
The category of free Lie algebras. It is used by domains of non-commutative algebra: LiePolynomial and XPBWPolynomial. Author: Michel Petitot (petitot@lifl.fr)
- 0: %
from AbelianMonoid
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from LieAlgebra R
- coef: (XRecursivePolynomial(VarSet, R), %) -> R
coef(x, y)returns the scalar product ofxbyy, the set of words being regarded as an orthogonal basis.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: % -> XDistributedPolynomial(VarSet, R)
coerce(x)returnsxas distributed polynomial.
- coerce: % -> XRecursivePolynomial(VarSet, R)
coerce(x)returnsxas a recursive polynomial.
- coerce: VarSet -> %
coerce(x)returnsxas a Lie polynomial.
- construct: (%, %) -> %
from LieAlgebra R
- degree: % -> NonNegativeInteger
degree(x)returns the greatest length of a word in the support ofx.
- eval: (%, VarSet, %) -> %
eval(p, x, v)replacesxbyvinp.
- latex: % -> String
from SetCategory
- LiePoly: LyndonWord VarSet -> %
LiePoly(l)returns the bracketed form oflas a Lie polynomial.
- lquo: (XRecursivePolynomial(VarSet, R), %) -> XRecursivePolynomial(VarSet, R)
lquo(x, y)returns the left simplification ofxbyy.
- mirror: % -> %
mirror(x)returnsSum(r_i mirror(w_i))ifxisSum(r_i w_i).
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- rquo: (XRecursivePolynomial(VarSet, R), %) -> XRecursivePolynomial(VarSet, R)
rquo(x, y)returns the right simplification ofxbyy.
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- trunc: (%, NonNegativeInteger) -> %
trunc(p, n)returns the polynomialptruncated at ordern.
- varList: % -> List VarSet
varList(x)returns the list of distinct entries ofx.
- zero?: % -> Boolean
from AbelianMonoid
BiModule(R, R)
Module R