FunctionFieldIntegralBasis(R, UP, F)ΒΆ
intclos.spad line 199 [edit on github]
R: EuclideanDomain with
squareFree: % -> Factored %
F: FramedAlgebra(R, UP)
In this package R is a Euclidean domain and F is a framed algebra over R. The package provides functions to compute the integral closure of R in the quotient field of F. It is assumed that char(R/P) = char(R) for any prime P of R. A typical instance of this is when R = K[x] and F is a function field over R.
- integralBasis: () -> Record(basis: Matrix R, basisDen: R, basisInv: Matrix R)
integralBasis()returns a record[basis, basisDen, basisInv]containing information regarding the integral closure ofRin the quotient field ofF, whereFis a framed algebra withR-module basisw1, w2, ..., wn. Ifbasisis the matrix(aij, i = 1..n, j = 1..n), then theith element of the integral basis isvi = (1/basisDen) * sum(aij * wj, j = 1..n), i.e. theith row ofbasiscontains the coordinates of theith basis vector. Similarly, theith row of the matrixbasisInvcontains the coordinates ofwiwith respect to the basisv1, ..., vn: ifbasisInvis the matrix(bij, i = 1..n, j = 1..n), thenwi = sum(bij * vj, j = 1..n).
- localIntegralBasis: R -> Record(basis: Matrix R, basisDen: R, basisInv: Matrix R)
integralBasis(p)returns a record[basis, basisDen, basisInv]containing information regarding the local integral closure ofRat the primepin the quotient field ofF, whereFis a framed algebra withR-module basisw1, w2, ..., wn. Ifbasisis the matrix(aij, i = 1..n, j = 1..n), then theith element of the local integral basis isvi = (1/basisDen) * sum(aij * wj, j = 1..n), i.e. theith row ofbasiscontains the coordinates of theith basis vector. Similarly, theith row of the matrixbasisInvcontains the coordinates ofwiwith respect to the basisv1, ..., vn: ifbasisInvis the matrix(bij, i = 1..n, j = 1..n), thenwi = sum(bij * vj, j = 1..n).