GenusZeroIntegration(R, F, L)¶
intaf.spad line 1 [edit on github]
R: Join(GcdDomain, RetractableTo Integer, Comparable, CharacteristicZero, LinearlyExplicitOver Integer)
F: Join(FunctionSpace R, AlgebraicallyClosedField, TranscendentalFunctionCategory)
L: SetCategory
This internal package rationalises integrands on curves of the form: y\^2 = a x\^2 + b x + c y\^2 = (a x + b) / (c x + d) f(x, y) = 0 where f has degree 1 in x The rationalization is done for integration, limited integration, extended integration and the risch differential equation.
- lift: (SparseUnivariatePolynomial F, Kernel F) -> SparseUnivariatePolynomial Fraction SparseUnivariatePolynomial F
lift(u, k)undocumented
- multivariate: (SparseUnivariatePolynomial Fraction SparseUnivariatePolynomial F, Kernel F, F) -> F
multivariate(u, k, f)undocumented
- palgint0: (F, Kernel F, Kernel F, F, SparseUnivariatePolynomial F) -> IntegrationResult F
palgint0(f, x, y, d, p)returns the integral off(x, y)dxwhereyis an algebraic function ofxsatisfyingd(x)\^2 y(x)\^2 = P(x).
- palgint0: (F, Kernel F, Kernel F, Kernel F, F, Fraction SparseUnivariatePolynomial F, F) -> IntegrationResult F
palgint0(f, x, y, z, t, c)returns the integral off(x, y)dxwhereyis an algebraic function ofxsatisfyingx = eval(t, z, ry)andc = d/dz t;ris rational function ofx,candtare rational functions ofz. Argumentzis a dummy variable not appearing inf(x, y).
- palgLODE0: (L, F, Kernel F, Kernel F, F, SparseUnivariatePolynomial F) -> Record(particular: Union(F, failed), basis: List F) if L has LinearOrdinaryDifferentialOperatorCategory F
palgLODE0(op, g, x, y, d, p)returns the solution ofop f = g. Argumentyis an algebraic function ofxsatisfyingd(x)\^2y(x)\^2 = P(x).
- palgLODE0: (L, F, Kernel F, Kernel F, Kernel F, F, Fraction SparseUnivariatePolynomial F, F) -> Record(particular: Union(F, failed), basis: List F) if L has LinearOrdinaryDifferentialOperatorCategory F
palgLODE0(op, g, x, y, z, t, c)returns the solution ofop f = g. Argumentyis an algebraic function ofxsatisfyingx = eval(t, z, ry)andc = d/dz t;ris rational function ofx,candtare rational functions ofz.
- palgRDE0: (F, F, Kernel F, Kernel F, (F, F, Symbol) -> Union(F, failed), F, SparseUnivariatePolynomial F) -> Union(F, failed)
palgRDE0(f, g, x, y, foo, d, p)returns a functionz(x, y)such thatdz/dx + n * df/dx z(x, y) = g(x, y)if such azexists, and “failed” otherwise. Argumentyis an algebraic function ofxsatisfyingd(x)\^2y(x)\^2 = P(x). Argumentfoo, called byfoo(a, b, x), is a function that solvesdu/dx + n * da/dx u(x) = u(x)for an unknownu(x)not involvingy.
- palgRDE0: (F, F, Kernel F, Kernel F, (F, F, Symbol) -> Union(F, failed), Kernel F, F, Fraction SparseUnivariatePolynomial F, F) -> Union(F, failed)
palgRDE0(f, g, x, y, foo, t, c)returns a functionz(x, y)such thatdz/dx + n * df/dx z(x, y) = g(x, y)if such azexists, and “failed” otherwise. Argumentyis an algebraic function ofxsatisfyingx = eval(t, z, ry)andc = d/dz t;ris rational function ofx,candtare rational functions ofz. Argumentfoo, called byfoo(a, b, x), is a function that solvesdu/dx + n * da/dx u(x) = u(x)for an unknownu(x)not involvingy.
- rationalize_ir: (IntegrationResult F, Kernel F) -> IntegrationResult F
rationalize_ir(irf, k1)eliminates square rootk1from the integration result.
- univariate: (F, Kernel F, Kernel F, SparseUnivariatePolynomial F) -> SparseUnivariatePolynomial Fraction SparseUnivariatePolynomial F
univariate(f, k, k, p)undocumented