IntegerNumberTheoryFunctionsΒΆ
numtheor.spad line 182 [edit on github]
This package provides various number theoretic functions on the integers.
- bernoulli: Integer -> Fraction Integer
bernoulli(n)returns thenth Bernoulli number. this isB(n, 0), whereB(n, x)is thenth Bernoulli polynomial.
- carmichaelLambda: Integer -> Integer
carmichaelLambda(n)returns exponent of the multiplicative group of integers modulon, that is smallest positive integerksuch thati^k rem n = 1for allirelatively prime ton.
- chineseRemainder: (Integer, Integer, Integer, Integer) -> Integer
chineseRemainder(x1, m1, x2, m2)returnsw, wherewis such thatw = x1 mod m1andw = x2 mod m2. Note:m1andm2must be relatively prime.
- euler: Integer -> Integer
euler(n)returns thenth Euler number. This is2^n E(n, 1/2), whereE(n, x)is thenth Euler polynomial.
- eulerPhi: Integer -> Integer
eulerPhi(n)returns the number of integers between 1 andn(including 1) which are relatively prime ton. This is the Euler phi functionphi(n)is also called the totient function.
- fibonacci: Integer -> Integer
fibonacci(n)returns thenth Fibonacci number,F[n]. The Fibonacci numbers are defined byF[0] = 0,F[1] = 1andF[n] = F[n-1] + F[n-2]. The algorithm has running timeO(log(n)^3). Reference: Knuth, The Art of Computer Programming Vol 2, Semi-Numerical Algorithms.
- harmonic: Integer -> Fraction Integer
harmonic(n)returns thenth harmonic number. This isH[n] = sum(1/k, k=1..n).
- jacobi: (Integer, Integer) -> Integer
jacobi(a, b)returns the Jacobi symbolJ(a/b). Whenbis odd,J(a/b) = product(L(a/p) for p in factor b ). Note: by convention, 0 is returned ifgcd(a, b) ~= 1. IterativeO(log(b)^2)version coded by Michael Monagan June 1987.
- legendre: (Integer, Integer) -> Integer
legendre(a, p)returns the Legendre symbolL(a/p).L(a/p) = (-1)^((p-1)/2) mod p(pprime), which is 0 ifais 0, 1 ifais a quadratic residuemod pand-1otherwise. Note: because the primality test is expensive, if it is known thatpis prime then usejacobi(a, p).
- moebiusMu: Integer -> Integer
moebiusMu(n)returns the Moebius functionmu(n).mu(n)is either-1, 0 or 1 as follows:mu(n) = 0ifnis divisible by a square > 1,mu(n) = (-1)^kifnis square-free and haskdistinct prime divisors.
- numberOfDivisors: Integer -> Integer
numberOfDivisors(n)returns the number of integers between 1 andn(inclusive) which dividen. The number of divisors ofnis often denoted bytau(n).
- sumOfDivisors: Integer -> Integer
sumOfDivisors(n)returns the sum of the integers between 1 andn(inclusive) which dividen. The sum of the divisors ofnis often denoted bysigma(n).
- sumOfKthPowerDivisors: (Integer, NonNegativeInteger) -> Integer
sumOfKthPowerDivisors(n, k)returns the sum of thekth powers of the integers between 1 andn(inclusive) which dividen. the sum of thekth powers of the divisors ofnis often denoted bysigma_k(n).