JetDifferential(JB, D)ΒΆ
jet.spad line 3591 [edit on github]
JetDifferential(JB, D) implements differentials (one-forms) over the jet bundle JB with coefficients from D. The differentials operate on JetVectorField(JB, D).
- 0: %
from AbelianMonoid
- *: (%, D) -> %
from RightModule D
- *: (D, %) -> %
from LeftModule D
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- coefficient: (%, JB) -> D
coefficient(om, jb)returns the coefficient ofomfor the differential ofjb.
- coefficients: % -> List D
coefficients(om)yields the coefficients ofom.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- contract: (JetVectorField(JB, D), %) -> D
contract(v, om)computes the interior derivative ofomwith respect tov.
- copy: % -> %
copy(om)returns a copy of the differentialom.
- d: D -> %
d(f)computes the differential off.
- d: JB -> %
d(jb)returns the differential ofjb.
- differentials: % -> List JB
directions(om)yields the differentials whereomhas non-vanishing coefficients.
- dP: (PositiveInteger, List NonNegativeInteger) -> %
dP(i, mu)returns the differential ofP(i, mu).
- dU: PositiveInteger -> %
dU(i)returns the differential ofU(i).
- dX: PositiveInteger -> %
dX(i)returns the differential ofX(i).
- eval: (%, JetVectorField(JB, D)) -> D
eval(om, v)applies the differentialomto the vector fieldv.
- latex: % -> String
from SetCategory
- lie: (JetVectorField(JB, D), %) -> %
lie(v, om)calculates the Lie derivative ofomwith respect tov.
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
from AbelianMonoid
BiModule(D, D)
Module D