LinearDependence(S, R)¶
lindep.spad line 1 [edit on github]
R: LinearlyExplicitOver S
Test for linear dependence.
- linearDependence: Vector R -> Union(Vector S, failed)
linearDependence([v1, ..., vn])returns[c1, ..., cn]ifc1*v1 + ... + cn*vn = 0and not all theci'sare 0, “failed” if thevi'sare linearly independent overS.
- linearlyDependent?: Vector R -> Boolean
linearlyDependent?([v1, ..., vn])returnstrueif thevi'sare linearly dependent overS,falseotherwise.
- particularSolution: (Matrix R, Vector R) -> Union(Vector Fraction S, failed) if S hasn’t Field
particularSolution([v1, ..., vn], u)returns[c1, ..., cn]such thatc1*v1 + ... + cn*vn = u, “failed” if no suchci'sexist in the quotient field ofS.
- particularSolution: (Matrix R, Vector R) -> Union(Vector S, failed) if S has Field
particularSolution([v1, ..., vn], u)returns[c1, ..., cn]such thatc1*v1 + ... + cn*vn = u, “failed” if no suchci'sexist inS.
- particularSolution: (Vector R, R) -> Union(Vector Fraction S, failed) if S hasn’t Field
particularSolution([v1, ..., vn], u)returns[c1, ..., cn]such thatc1*v1 + ... + cn*vn = u, “failed” if no suchci'sexist in the quotient field ofS.
- particularSolution: (Vector R, R) -> Union(Vector S, failed) if S has Field
particularSolution([v1, ..., vn], u)returns[c1, ..., cn]such thatc1*v1 + ... + cn*vn = u, “failed” if no suchci'sexist inS.
- solveLinear: (Matrix R, Vector R) -> Record(particular: Union(Vector Fraction S, failed), basis: List Vector Fraction S) if S hasn’t Field
solveLinear([v1, ..., vn], u)returns solution of the systemc1*v1 + ... + cn*vn = uand and a basis of the associated homogeneous systemc1*v1 + ... + cn*vn = 0
- solveLinear: (Matrix R, Vector R) -> Record(particular: Union(Vector S, failed), basis: List Vector S) if S has Field
solveLinear([v1, ..., vn], u)returns solution of the systemc1*v1 + ... + cn*vn = uand and a basis of the associated homogeneous systemc1*v1 + ... + cn*vn = 0