MultivariateLifting(E, OV, R, P)¶
mlift.spad line 1 [edit on github]
OV: OrderedSet
P: PolynomialCategory(R, E, OV)
This package provides the functions for the multivariate “lifting”, using an algorithm of Paul Wang. This package will work for every euclidean domain R which has property F, i.e. there exists a factor operation in R[x].
- corrPoly: (SparseUnivariatePolynomial P, List OV, List R, List NonNegativeInteger, List SparseUnivariatePolynomial P, SparseUnivariatePolynomial R -> Union(List SparseUnivariatePolynomial R, failed)) -> Union(List SparseUnivariatePolynomial P, failed)
corrPoly(u, lv, lr, ln, lu, bsolv)solves polynomial equation system u/f = sum(ai/lu(i)) wherefis product oflu(i) and deg(ai) < deg(lu(i)) using modular method. corrPoly returns “failed” if there are no solution.lvis list of variables,lris list of corresponding evaluation points, bsolv is solver overRspecialized for modular images oflu.
- lifting: (SparseUnivariatePolynomial P, List OV, List SparseUnivariatePolynomial R, List R, List P, List NonNegativeInteger, List SparseUnivariatePolynomial R -> Union(SparseUnivariatePolynomial R -> Union(List SparseUnivariatePolynomial R, failed), failed)) -> Union(List SparseUnivariatePolynomial P, failed)
lifting(u, lv, lu, lr, lp, ln, gen_solv)lifts univariate factorization, returning recovered factors or “failed” in case of bad reduction.uis multivariate polynomial to factor,luis list of univariate factors,lvis list of variables,lnis list of degrees corresponding to variables,lris list of evaluation points,lpis list of leading coefficients of factors if known, empty otherwise, gen_solv delivers solver for polynomial equations
- lifting: (SparseUnivariatePolynomial P, List OV, List SparseUnivariatePolynomial R, List R, List P, List NonNegativeInteger, R) -> Union(List SparseUnivariatePolynomial P, failed) if R has EuclideanDomain
lifting(u, lv, lu, lr, lp, ln, r)is lifting(u,lv,lu,lr,lp,ln, solv(r)) where solv(r) is solver using reduction modulorand lifting. Memberes oflumust be relatively prime modulor