NonAssociativeRngΒΆ
naalgc.spad line 142 [edit on github]
NonAssociativeRng is a basic ring-type structure, not necessarily commutative or associative, and not necessarily with unit. Axioms x*(y+z) = x*y + x*z (x+y)*z = x*z + y*z Common Additional Axioms noZeroDivisors ab = 0 => a=0 or b=0
- 0: %
from AbelianMonoid
- *: (%, %) -> %
from Magma
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, PositiveInteger) -> %
from Magma
- antiCommutator: (%, %) -> %
- associator: (%, %, %) -> %
associator(a, b, c)returns(a*b)*c-a*(b*c).
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- commutator: (%, %) -> %
commutator(a, b)returnsa*b-b*a.
- latex: % -> String
from SetCategory
- leftPower: (%, PositiveInteger) -> %
from Magma
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- rightPower: (%, PositiveInteger) -> %
from Magma
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
from AbelianMonoid