PadeApproximantPackage(R, x, pt)¶
pade.spad line 1 [edit on github]
This package computes reliable Pad&ea. approximants using a generalized Viskovatov continued fraction algorithm. Authors: Trager, Burge, Hassner & Watt. Date Created: April 1987 Keywords: Pade, series Examples: References: “Pade Approximants, Part I: Basic Theory”, Baker & Graves-Morris.
- pade: (NonNegativeInteger, NonNegativeInteger, UnivariateTaylorSeries(R, x, pt)) -> Union(Fraction UnivariatePolynomial(x, R), failed)
pade(nd, dd, s)computes the quotient of polynomials (if it exists) with numerator degree at mostndand denominator degree at mostddwhich matches the seriessto ordernd + dd.
- pade: (NonNegativeInteger, NonNegativeInteger, UnivariateTaylorSeries(R, x, pt), UnivariateTaylorSeries(R, x, pt)) -> Union(Fraction UnivariatePolynomial(x, R), failed)
pade(nd, dd, ns, ds)computes the approximant as a quotient of polynomials (if it exists) for argumentsnd(numerator degree of approximant),dd(denominator degree of approximant),ns(numerator series of function), andds(denominator series of function).