PolynomialCategoryQuotientFunctions(E, V, R, P, F)¶
rf.spad line 1 [edit on github]
V: OrderedSet
R: Ring
P: PolynomialCategory(R, E, V)
F: Field with
coerce: P -> %
denom: % -> P
numer: % -> P
This package transforms multivariate polynomials or fractions into univariate polynomials or fractions, and back.
- isExpt: F -> Union(Record(var: V, exponent: Integer), failed)
isExpt(p)returns[x, n]ifp = x^nandn ~= 0, “failed” otherwise.
- isPlus: F -> Union(List F, failed)
isPlus(p)returns [m1, …,mn] ifp = m1 + ... + mnandn > 1, “failed” otherwise.
- isPower: F -> Union(Record(val: F, exponent: Integer), failed)
isPower(p)returns[x, n]ifp = x^nandn ~= 0, “failed” otherwise.
- isTimes: F -> Union(List F, failed)
isTimes(p)returns[a1, ..., an]ifp = a1 ... anandn > 1, “failed” otherwise.
- mainVariable: F -> Union(V, failed)
mainVariable(f)returns the highest variable appearing in the numerator or the denominator off, “failed” iffhas no variables.
- multivariate: (Fraction SparseUnivariatePolynomial F, V) -> F
multivariate(f, v)applies both the numerator and denominator offtov.
- univariate: (F, V) -> Fraction SparseUnivariatePolynomial F
univariate(f, v)returnsfviewed as a univariate rational function inv.
- univariate: (F, V, SparseUnivariatePolynomial F) -> SparseUnivariatePolynomial F
univariate(f, x, p)returnsfviewed as a univariate polynomial inx, using the side-conditionp(x) = 0.
- variables: F -> List V
variables(f)returns the list of variables appearing in the numerator or the denominator off.