PolynomialFactorizationByRecursion(R, E, VarSet, S)¶
pfbr.spad line 1 [edit on github]
VarSet: OrderedSet
S: PolynomialCategory(R, E, VarSet)
PolynomialFactorizationByRecursion(R, E, VarSet, S) is used for factorization of sparse univariate polynomials over a domain S of multivariate polynomials over R.
- bivariateSLPEBR: (List SparseUnivariatePolynomial S, SparseUnivariatePolynomial S, VarSet) -> Union(List SparseUnivariatePolynomial S, failed)
bivariateSLPEBR(lp, p, v)implements the bivariate case of solveLinearPolynomialEquationByRecursion; its implementation depends onR
- factorByRecursion: SparseUnivariatePolynomial S -> Factored SparseUnivariatePolynomial S
factorByRecursion(p)factors polynomialp. This function performs the recursion step for factorPolynomial, as defined in PolynomialFactorizationExplicit category (see factorPolynomial)
- factorSquareFreeByRecursion: SparseUnivariatePolynomial S -> Factored SparseUnivariatePolynomial S
factorSquareFreeByRecursion(p)returns the square free factorization ofp. This functions performs the recursion step for factorSquareFreePolynomial, as defined in PolynomialFactorizationExplicit category (see factorSquareFreePolynomial).
- randomR: Integer -> R
randomR producesa random element ofR
- solveLinearPolynomialEquationByRecursion: (List SparseUnivariatePolynomial S, SparseUnivariatePolynomial S) -> Union(List SparseUnivariatePolynomial S, failed)
solveLinearPolynomialEquationByRecursion([p1, ..., pn], p)returns the list of polynomials[q1, ..., qn]such thatsum qi/pi = p / prod pi, a recursion step for solveLinearPolynomialEquation as defined in PolynomialFactorizationExplicit category (see solveLinearPolynomialEquation). If no such list ofqiexists, then “failed” is returned.