SpecialFunctionCategoryΒΆ
trigcat.spad line 235 [edit on github]
Category for the other special functions.
- abs: % -> %
abs(x)returns the absolute value ofx.
- airyAi: % -> %
airyAi(x)is the Airy functionAi(x).
- airyAiPrime: % -> %
airyAiPrime(x)is the derivative of the Airy functionAi(x).
- airyBi: % -> %
airyBi(x)is the Airy functionBi(x).
- airyBiPrime: % -> %
airyBiPrime is the derivative of the Airy function
Bi(x).
- angerJ: (%, %) -> %
angerJ(v, z)is the AngerJfunction.
- besselI: (%, %) -> %
besselI(v, z)is the modified Bessel function of the first kind.
- besselJ: (%, %) -> %
besselJ(v, z)is the Bessel function of the first kind.
- besselK: (%, %) -> %
besselK(v, z)is the modified Bessel function of the second kind.
- besselY: (%, %) -> %
besselY(v, z)is the Bessel function of the second kind.
- Beta: (%, %) -> %
Beta(x, y)isGamma(x) * Gamma(y)/Gamma(x+y).
- ceiling: % -> %
ceiling(x)returns the smallest integer above or equalx.
- charlierC: (%, %, %) -> %
charlierC(n, a, z)is the Charlier polynomial
- conjugate: % -> %
conjugate(x)returns the conjugate ofx.
- digamma: % -> %
digamma(x)is the logarithmic derivative ofGamma(x)(often writtenpsi(x)in the literature).
- diracDelta: % -> %
diracDelta(x)is unit mass at zeros ofx.
- ellipticE: % -> %
ellipticE(m)is the complete elliptic integral of the second kind:ellipticE(m) = integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..1).
- ellipticE: (%, %) -> %
ellipticE(z, m)is the incomplete elliptic integral of the second kind:ellipticE(z, m) = integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..z).
- ellipticF: (%, %) -> %
ellipticF(z, m)is the incomplete elliptic integral of the first kind :ellipticF(z, m) = integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..z).
- ellipticK: % -> %
ellipticK(m)is the complete elliptic integral of the first kind:ellipticK(m) = integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..1).
- ellipticPi: (%, %, %) -> %
ellipticPi(z, n, m)is the incomplete elliptic integral of the third kind:ellipticPi(z, n, m) = integrate(1/((1-n*t^2)*sqrt((1-t^2)*(1-m*t^2))), t = 0..z).
- floor: % -> %
floor(x)returns the largest integer below or equalx.
- fractionPart: % -> %
fractionPart(x)returns the fractional part ofx. Note: fractionPart(x) =x- floor(x).
- Gamma: % -> %
Gamma(x)is the Euler Gamma function.
- Gamma: (%, %) -> %
Gamma(a, x)is the incomplete Gamma function.
- hankelH1: (%, %) -> %
hankelH1(v, z)is first Hankel function (Bessel function of the third kind).
- hankelH2: (%, %) -> %
hankelH2(v, z)is the second Hankel function (Bessel function of the third kind).
- hermiteH: (%, %) -> %
hermiteH(n, z)is the Hermite polynomial
- hypergeometricF: (List %, List %, %) -> % if % has RetractableTo Integer
hypergeometricF(la, lb, z)is the generalized hypergeometric function.
- jacobiCn: (%, %) -> %
jacobiCn(z, m)is the Jacobi ellipticcnfunction, defined byjacobiCn(z, m)^2 + jacobiSn(z, m)^2 = 1andjacobiCn(0, m) = 1.
- jacobiDn: (%, %) -> %
jacobiDn(z, m)is the Jacobi ellipticdnfunction, defined byjacobiDn(z, m)^2 + m*jacobiSn(z, m)^2 = 1andjacobiDn(0, m) = 1.
- jacobiP: (%, %, %, %) -> %
jacobiP(n, a, b, z)is the Jacobi polynomial
- jacobiSn: (%, %) -> %
jacobiSn(z, m)is the Jacobi ellipticsnfunction, defined by the formulajacobiSn(ellipticF(z, m), m) = z.
- jacobiTheta: (%, %) -> %
jacobiTheta(z, m)is the Jacobi Theta function in Jacobi notation.
- jacobiZeta: (%, %) -> %
jacobiZeta(z, m)is the Jacobi elliptic zeta function, defined byD(jacobiZeta(z, m), z) = jacobiDn(z, m)^2 - ellipticE(m)/ellipticK(m)andjacobiZeta(0, m) = 0.
- kelvinBei: (%, %) -> %
kelvinBei(v, z)is the Kelvin bei function defined by equalitykelvinBei(v, z) = imag(besselJ(v, exp(3*\%pi*\%i/4)*z))forzandvreal.
- kelvinBer: (%, %) -> %
kelvinBer(v, z)is the Kelvin ber function defined by equalitykelvinBer(v, z) = real(besselJ(v, exp(3*\%pi*\%i/4)*z))forzandvreal.
- kelvinKei: (%, %) -> %
kelvinKei(v, z)is the Kelvin kei function defined by equalitykelvinKei(v, z) = imag(exp(-v*\%pi*\%i/2)*besselK(v, exp(\%pi*\%i/4)*z))forzandvreal.
- kelvinKer: (%, %) -> %
kelvinKer(v, z)is the Kelvin kei function defined by equalitykelvinKer(v, z) = real(exp(-v*\%pi*\%i/2)*besselK(v, exp(\%pi*\%i/4)*z))forzandvreal.
- kummerM: (%, %, %) -> %
kummerM(mu, nu, z)is the KummerMfunction.
- kummerU: (%, %, %) -> %
kummerU(mu, nu, z)is the KummerUfunction.
- laguerreL: (%, %, %) -> %
laguerreL(n, a, z)is the Laguerre polynomial
- lambertW: % -> %
lambertW(z)=wis the principial branch of the solution to the equationwe^w = z.
- legendreP: (%, %, %) -> %
legendreP(nu, mu, z)is the LegendrePfunction.
- legendreQ: (%, %, %) -> %
legendreQ(nu, mu, z)is the LegendreQfunction.
- lerchPhi: (%, %, %) -> %
lerchPhi(z, s, a)is the Lerch Phi function.
- lommelS1: (%, %, %) -> %
lommelS1(mu, nu, z)is the Lommelsfunction.
- lommelS2: (%, %, %) -> %
lommelS2(mu, nu, z)is the LommelSfunction.
- meijerG: (List %, List %, List %, List %, %) -> % if % has RetractableTo Integer
meijerG(la, lb, lc, ld, z)is the meijerG function.
- meixnerM: (%, %, %, %) -> %
meixnerM(n, b, c, z)is the Meixner polynomial
- polygamma: (%, %) -> %
polygamma(k, x)is thek-thderivative ofdigamma(x), (often writtenpsi(k, x)in the literature).
- polylog: (%, %) -> %
polylog(s, x)is the polylogarithm of ordersatx.
- riemannZeta: % -> %
riemannZeta(z)is the Riemann Zeta function.
- sign: % -> %
sign(x)returns the sign ofx.
- struveH: (%, %) -> %
struveH(v, z)is the StruveHfunction.
- struveL: (%, %) -> %
struveL(v, z)is the StruveLfunction defined by the formulastruveL(v, z) = -\%i^exp(-v*\%pi*\%i/2)*struveH(v, \%i*z).
- unitStep: % -> %
unitStep(x)is 0 forxless than 0, 1 forxbigger or equal 0.
- weberE: (%, %) -> %
weberE(v, z)is the WeberEfunction.
- weierstrassP: (%, %, %) -> %
weierstrassP(g2, g3, z)is the WeierstrassPfunction.
- weierstrassPInverse: (%, %, %) -> %
weierstrassPInverse(g2, g3, z)is the inverse of WeierstrassPfunction, defined by the formulaweierstrassP(g2, g3, weierstrassPInverse(g2, g3, z)) = z.
- weierstrassPPrime: (%, %, %) -> %
weierstrassPPrime(g2, g3, z)is the derivative of WeierstrassPfunction.
- weierstrassSigma: (%, %, %) -> %
weierstrassSigma(g2, g3, z)is the Weierstrass Sigma function.
- weierstrassZeta: (%, %, %) -> %
weierstrassZeta(g2, g3, z)is the Weierstrass Zeta function.
- whittakerM: (%, %, %) -> %
whittakerM(k, m, z)is the WhittakerMfunction.
- whittakerW: (%, %, %) -> %
whittakerW(k, m, z)is the WhittakerWfunction.