TranscendentalManipulations(R, F)ΒΆ
manip.spad line 458 [edit on github]
R: Join(Comparable, GcdDomain)
F: Join(FunctionSpace R, TranscendentalFunctionCategory)
TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.
- cos2sec: F -> F
cos2sec(f)converts everycos(u)appearing infinto1/sec(u).
- cosh2sech: F -> F
cosh2sech(f)converts everycosh(u)appearing infinto1/sech(u).
- cot2tan: F -> F
cot2tan(f)converts everycot(u)appearing infinto1/tan(u).
- cot2trig: F -> F
cot2trig(f)converts everycot(u)appearing infintocos(u)/sin(u).
- coth2tanh: F -> F
coth2tanh(f)converts everycoth(u)appearing infinto1/tanh(u).
- coth2trigh: F -> F
coth2trigh(f)converts everycoth(u)appearing infintocosh(u)/sinh(u).
- csc2sin: F -> F
csc2sin(f)converts everycsc(u)appearing infinto1/sin(u).
- csch2sinh: F -> F
csch2sinh(f)converts everycsch(u)appearing infinto1/sinh(u).
- expand: F -> F
expand(f)performs the following expansions onf:begin{items} item 1. logs of products are expanded into sums of logs. item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. item 3. formal powers of the form(a/b)^care expanded intoa^c * b^(-c). end{items}
- expandLog: F -> F
expandLog(f)converts everylog(a/b)appearing infintolog(a) - log(b), and everylog(a*b)intolog(a) + log(b).
- expandPower: F -> F
expandPower(f)converts every power(a/b)^cappearing infintoa^c * b^(-c).
- expandTrigProducts: F -> F if F has ConvertibleTo Pattern R and R has PatternMatchable R and R has ConvertibleTo Pattern R and F has PatternMatchable R
expandTrigProducts(e)replacessin(x)*sin(y)by(cos(x-y)-cos(x+y))/2,cos(x)*cos(y)by(cos(x-y)+cos(x+y))/2, andsin(x)*cos(y)by(sin(x-y)+sin(x+y))/2. Note: this operation uses pattern matcher, so it is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.
- htrigs: F -> F
htrigs(f)converts all the exponentials infinto hyperbolic sines and cosines.
- removeCoshSq: F -> F
removeCoshSq(f)converts everycosh(u)^2appearing infinto1 - sinh(u)^2, and also reduces higher powers ofcosh(u)with that formula.
- removeCosSq: F -> F
removeCosSq(f)converts everycos(u)^2appearing infinto1 - sin(u)^2, and also reduces higher powers ofcos(u)with that formula.
- removeSinhSq: F -> F
removeSinhSq(f)converts everysinh(u)^2appearing infinto1 - cosh(u)^2, and also reduces higher powers ofsinh(u)with that formula.
- removeSinSq: F -> F
removeSinSq(f)converts everysin(u)^2appearing infinto1 - cos(u)^2, and also reduces higher powers ofsin(u)with that formula.
- sec2cos: F -> F
sec2cos(f)converts everysec(u)appearing infinto1/cos(u).
- sech2cosh: F -> F
sech2cosh(f)converts everysech(u)appearing infinto1/cosh(u).
- simplify: F -> F
simplify(f)performs the following simplifications onf:begin{items} item 1. rewrites trigs and hyperbolic trigs in terms ofsin,cos,sinh,cosh. item 2. rewritessin^2andsinh^2in terms ofcosandcosh, item 3. rewritesexp(a)*exp(b)asexp(a+b). item 4. rewrites(a^(1/n))^m * (a^(1/s))^tas a single power of a single radical ofa. end{items}
- simplifyExp: F -> F
simplifyExp(f)performs the following simplifications onf:begin{items} item 1. rewritesexp(a)*exp(b)asexp(a+b). item 2. rewritesa^b*a^casa^(b+c). item 3. rewritesexp(a)/exp(b)asexp(a-b). item 4. rewritesa^b/a^casa^(b-c). end{items}
- simplifyLog: F -> F
simplifyLog(f)converts everylog(a) - log(b)appearing infintolog(a/b), everylog(a) + log(b)intolog(a*b)and everyn*log(a)intolog(a^n).
- sin2csc: F -> F
sin2csc(f)converts everysin(u)appearing infinto1/csc(u).
- sinh2csch: F -> F
sinh2csch(f)converts everysinh(u)appearing infinto1/csch(u).
- tan2cot: F -> F
tan2cot(f)converts everytan(u)appearing infinto1/cot(u).
- tan2trig: F -> F
tan2trig(f)converts everytan(u)appearing infintosin(u)/cos(u).
- tanh2coth: F -> F
tanh2coth(f)converts everytanh(u)appearing infinto1/coth(u).
- tanh2trigh: F -> F
tanh2trigh(f)converts everytanh(u)appearing infintosinh(u)/cosh(u).