CachedQPochhammerPower(C, L)ΒΆ

cachedqpochpow.spad line 88 [edit on github]

CachedQPochhammerPower implements a cache for powers of the Euler function ($q$-Pochhammer symbol $(q;q)_infty$. and the Jacobi function (

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

=: (%, %) -> Boolean

from BasicType

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

coerce: % -> OutputForm

from CoercibleTo OutputForm

eulerFunctionPower: (PositiveInteger, Integer) -> L

eulerFunctionPower(n, e) computes (prod_{k=1}^infty(1-q^{kn}))^e.

hash: % -> SingleInteger

from SetCategory

hashUpdate!: (HashState, %) -> HashState

from SetCategory

jacobiFunctionPower: (PositiveInteger, PositiveInteger, Integer) -> L

jacobiFunctionPower(d,g,e) computes and caches jacobiFunction(d,g)^e from QFunctions(C,L).

latex: % -> String

from SetCategory

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

one?: % -> Boolean

from MagmaWithUnit

recip: % -> Union(%, failed)

from MagmaWithUnit

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from MagmaWithUnit

BasicType

CoercibleTo OutputForm

Magma

MagmaWithUnit

Monoid

SemiGroup

SetCategory