CuspΒΆ
qetacusp.spad line 110 [edit on github]
Cusp implements representatives of cusps of a subgroup of $SL2Z$
- <=: (%, %) -> Boolean
from PartialOrder
- <: (%, %) -> Boolean
from PartialOrder
- >=: (%, %) -> Boolean
from PartialOrder
- >: (%, %) -> Boolean
from PartialOrder
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- cusp: Matrix Integer -> %
cusp(mat)returns the cusp represented by the transformation matrixmat. It returns cusp(mat(1,1),mat(2,1)). cusp is a left-inverse of cuspToMatrix, i.e. cusp(cuspToMatrix(c))=c.
- cuspToMatrix: % -> Matrix Integer
cuspToMatrix(x)returns a matrix gamma=[[a,b],[c,d]] corresponding to the cusp (a:c).
- denom: % -> Integer
For
x=(a:c) denom(x) returnsc. We assure that denom(x)>=0.
- hash: % -> SingleInteger
from Hashable
- hashUpdate!: (HashState, %) -> HashState
from Hashable
- infinity?: % -> Boolean
infinity?(x)returnstrueif and only ifxis the cusp (1:0).
- infinity: () -> %
infinity()returns the cusp (1:0).
- latex: % -> String
from SetCategory
- max: (%, %) -> %
from OrderedSet
- min: (%, %) -> %
from OrderedSet
- moebiusTransform: (Integer, Integer, Integer, Integer, %) -> %
moebiusTransform(a,b,c,d,tau)computes the Moebius transform oftau, i.e. (a*tau+b)/(c*tau+d). Input condition: a*d-b*cis nonzero.
- moebiusTransform: (Matrix Integer, %) -> %
moebiusTransform(m, tau)computes the Moebius transform of tau. Input condition: not zero? determinantm,
- numer: % -> Integer
For
x=(a:c) numer(x) returns a.
- rational: % -> Fraction Integer
If not infinity?(
x) then rational(x) returns the rational number numer(x)/denom(x).
- smaller?: (%, %) -> Boolean
from Comparable