FunctionalLaurentInverse K¶
newtonpuiseux.spad line 549 [edit on github]
For a Laurent series f(q) = q^(-n)(1 + a1*q + a2*q^2 + …) find all n Puiseux series q1(v), …, qn(v) such that f(qi(v))=v for all v in a close neighborhood of v_0. Algorithm follows cite{PauleRadu_ProofWeierstrassGapTheorem_2019} Section 6.
- functionalInverse: QEtaLaurentSeries K -> QEtaLaurentSeries K
functionalInverse(t)wheretis non-zero andd= order(t)~=0 returns a Laurent serieswof order 1 such thatt(w(q))=q^d Note that this is the same as doing the following: functionalInverse(t)==revert nthRoot(t,n)