FunctionalLaurentInverse K¶
newtonpuiseux.spad line 549 [edit on github]
For a Laurent series f
(q
) = q^
(-n
)(1 + a1*q + a2*q^2
+ …) find all n
Puiseux series q1
(v
), …, qn
(v
) such that f
(qi
(v
))=v
for all v
in a close neighborhood of v_0
. Algorithm follows cite{PauleRadu_ProofWeierstrassGapTheorem_2019
} Section 6.
- functionalInverse: QEtaLaurentSeries K -> QEtaLaurentSeries K
functionalInverse(t)
wheret
is non-zero andd
= order(t
)~=
0 returns a Laurent seriesw
of order 1 such thatt
(w
(q
))=q^d Note that this is the same as doing the following: functionalInverse(t
)==
revert nthRoot(t
,n
)