NewtonPuiseux(K, var, cen)ΒΆ
newtonpuiseux.spad line 252 [edit on github]
K: Join(AlgebraicallyClosedField, PolynomialFactorizationExplicit)
var: Symbol
cen: K
Implements the computation of a Puiseux series satisfying a bivariate polynomial.
- coefficientRelation: (SparseUnivariatePolynomial PolynomialRing(K, Fraction Integer), List Point Fraction Integer) -> SparseUnivariatePolynomial K
coefficientRelation(p, points)
returns the relation that the coefficient must fulfil in order to be a coefficient of the puiseux series.
coerce: PolynomialRing(K, Fraction Integer) -> UnivariatePuiseuxSeries(K, var, cen)
- elt: (SparseUnivariatePolynomial PolynomialRing(K, Fraction Integer), UnivariatePuiseuxSeries(K, var, cen)) -> UnivariatePuiseuxSeries(K, var, cen)
p
(s
) replaces the variable in the univariate polynomial ring by the Puiseux seriess
.
- leadingPuiseuxMonomials: (Polynomial K, Symbol, Symbol) -> List Record(k: Fraction Integer, c: K)
leadingPuiseuxMonomials(p, x, y)
returns for each slope of the Newton polygon ofp
the leading monomial of the Puiseux seriesY
satisfyingp
(x
,Y
(x
)) = 0 in terms of the defining polynomial for the leading coefficient, i.e. one monomial might correspond to several coefficients according to the degree of the defining polynomial.
leadingPuiseuxMonomials: (SparseUnivariatePolynomial PolynomialRing(K, Fraction Integer), Fraction Integer) -> List Record(k: Fraction Integer, c: K)
- leadingPuiseuxMonomials: SparseUnivariatePolynomial PolynomialRing(K, Fraction Integer) -> List Record(k: Fraction Integer, c: K)
leadingPuiseuxMonomials(p)
returns for each slope of the Newton polygon ofp
the leading monomial of the Puiseux seriesY
satisfyingp
(x
,Y
(x
)) = 0 in terms of the defining polynomial for the leading coefficient, i.e. one monomial might correspond to several coefficients according to the degree of the defining polynomial.
- leadingPuiseuxMonomials: SparseUnivariatePolynomial SparseUnivariatePolynomial K -> List Record(k: Fraction Integer, c: K)
leadingPuiseuxMonomials(p)
returns for each slope of the Newton polygon ofp
the leading monomial of the Puiseux seriesY
satisfyingp
(x
,Y
(x
)) = 0 in terms of the defining polynomial for the leading coefficient, i.e. one monomial might correspond to several coefficients according to the degree of the defining polynomial.
nextPuiseuxMonomials: PreNewtonPuiseux K -> PreNewtonPuiseux K
nextY: (SparseUnivariatePolynomial PolynomialRing(K, Fraction Integer), Record(k: Fraction Integer, c: K)) -> SparseUnivariatePolynomial PolynomialRing(K, Fraction Integer)
poly2KPXY: (Polynomial K, Symbol, Symbol) -> SparseUnivariatePolynomial PolynomialRing(K, Fraction Integer)
polynomial2Points: (Polynomial K, Symbol, Symbol) -> List Point Fraction Integer
polynomial2Points: SparseUnivariatePolynomial PolynomialRing(K, Fraction Integer) -> List Point Fraction Integer
polynomial2Points: SparseUnivariatePolynomial SparseUnivariatePolynomial K -> List Point Fraction Integer
- puiseuxSolutions: SparseUnivariatePolynomial PolynomialRing(K, Fraction Integer) -> List UnivariatePuiseuxSeries(K, var, cen)
puiseuxSolutions(p)
returns degree(p
) Puiseux series solutionss
such thatp
(s
)=0
.