QEtaAlgebraBasisCategory FΒΆ
qetasamba.spad line 114 [edit on github]
F: Type
QEtaAlgebraBasisCategory(F) is a category for a data structure that can be used for reduction modulo an algebra basis (samba basis).
- basis: % -> List F
basis(x)returns all basis elements.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- initialize: List F -> %
initialize(m)creates an initial basis.
- multiplier: % -> F
multiplier(x)returns multiplier element.
- multiplierPower!: (%, NonNegativeInteger) -> F
multiplierPower!(x,n)returns multiplier element raised to powern. Since a power of the multiplier is needed several times, this function is mainly here to allow a domain that implements this function to cache the powers.
- numberOfGaps: % -> NonNegativeInteger
numberOfGaps(x)computes reduce(+, [floor(x/n) forxin bas], 0) where t=multiplier(x), n=qetaGrade(t) and bas=basis(x). If #(basis(x,i)=1for allifrom 1 ton-1 then numberOfGaps(x) is equal to the number of gaps (see Weierstrass Gap Theorem) of the module generated by bas overC[t].