QEtaAlgebraBasisCategory FΒΆ
qetasamba.spad line 114 [edit on github]
F: Type
QEtaAlgebraBasisCategory(F
) is a category for a data structure that can be used for reduction modulo an algebra basis (samba basis).
- basis: % -> List F
basis(x)
returns all basis elements.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- initialize: List F -> %
initialize(m)
creates an initial basis.
- multiplier: % -> F
multiplier(x)
returns multiplier element.
- multiplierPower!: (%, NonNegativeInteger) -> F
multiplierPower!(x,n)
returns multiplier element raised to powern
. Since a power of the multiplier is needed several times, this function is mainly here to allow a domain that implements this function to cache the powers.
- numberOfGaps: % -> NonNegativeInteger
numberOfGaps(x)
computes reduce(+, [floor(x/n
) forx
in bas], 0) where t=multiplier(x
), n=qetaGrade(t
) and bas=basis(x
). If #(basis(x
,i
)=1
for alli
from 1 ton
-1 then numberOfGaps(x
) is equal to the number of gaps (see Weierstrass Gap Theorem) of the module generated by bas overC
[t
].