QEtaKolbergΒΆ
cite[Def.~35]{Radu:RamanujanKolberg:2015}
- chiExponent: (Integer , PositiveInteger , List NonNegativeInteger ) -> Integer
chiExponent(sigmaInfty, m, orb)computesesuch that $exp(2piie/ 24) = chi_{s,m,t)$. We assume $sigmaInfty= sum_{delta|mm} deltas_delta$. See Lemma ref{thm:chi-exponent}. Furthermore, we assume that orb = orbit(sigmaInfty,m,t).
- etaCoFactorSpace: (PositiveInteger , PositiveInteger , List Integer , PositiveInteger , NonNegativeInteger ) -> Record(particular: Union(Vector Integer , failed), basis: List Vector Integer )
etaCoFactorSpace(nn, mm, s, m, t)returns a vectorvand the basis of a space such that #v=#divisors(nn) and modularConditions?(nn, membersr,mm,s,m,t) istruefor anyr=v+ reduce(_+, [z.i* basis.iforiin 1..#basis]) and any sufficiently long listzof integers. The function fails, if there is no such solution.
- modularConditions?: (PositiveInteger , List Integer ) -> Boolean
modularConditions?(nn, r)returnstrueiff the eta quotient corresponding toris a modular function forGamma_0(nn). It is equivalent to modularConditions?(nn,r, 1, [0], 1, 0). Compare with rStarConditions from QAuxiliaryModularEtaQuotientPackage.
- modularConditions?: (PositiveInteger , List Integer , PositiveInteger , List Integer , PositiveInteger , NonNegativeInteger ) -> Boolean
modularConditions?(nn, r, mm, s, m, t)returnstrueiff all the conditions of Theorem~ref{thm:RaduConditions} are fulfilled. Compare with rStarConditions from QAuxiliaryModularEtaQuotientPackage.
- modularInputConditions?: (PositiveInteger , PositiveInteger , List Integer , PositiveInteger , NonNegativeInteger ) -> Boolean
modularInputConditions?(nn, mm, s, m, t)returnstrueiff all the conditions for the parameters are fulfilled. This checks whether (nn,mm,s,m,t) is in Delta^* as defined in Definition~ref{def:modular-input-conditions}.
- orbit: (Integer , PositiveInteger , NonNegativeInteger ) -> List NonNegativeInteger
orbit(sigmaInfty, m, t)computes the elements of $modularOrbit{s,m,t)$ as defined in qetafun.spad, cite[Def.~42]{Radu:RamanujanKolberg:2015} and cite[Lemma 4.35]{Radu:PhD:2010}. We assume $sigmaInfty= sum_{delta|M} deltas_delta$.
- orbitRadu: (Integer , PositiveInteger , NonNegativeInteger ) -> List NonNegativeInteger
- Do not use this function! It is just another implementation of orbit.