QEtaOneOverPi CΒΆ
oneoverpi.spad line 107 [edit on github]
QEtaOneOverPi provides functions to find formulas for the computation of 1/pi.
- cqD: (C, QEtaLaurentSeries C) -> QEtaLaurentSeries C
cqD(c,x)returns monomial(c,1)*D(X).
- expTruncated: (PositiveInteger, C) -> C if C has Field
expTruncated(s,x)computes the exponential series truncated at powersat the valuex, i.e. it computes sum(x^n/factorial(n),n=0..s).
- moebiusTransform: (Matrix Fraction Integer, C) -> C if C has Field
moebiusTransform(m, c)computes the Moebius transform ofc.
- moebiusTransform: (Matrix Integer, C) -> C if C has Field
moebiusTransform(m, c)computes the Moebius transform ofc.
- theta2ConstantQIncompleteH: (NonNegativeInteger, C) -> C if C has Field
theta2ConstantQIncompleteL(
m,q) computes $t_{2h}(m,q)$ according to eqref{eq:t2-m-q}, i.e. $t_{2h}(m,q)}=t_{2l}(m,q)+frac{2q^{frac{(m+1)(m+2)}{2}}}{1-q}$.
- theta2ConstantQIncompleteL: (NonNegativeInteger, C) -> C if C has Field
theta2ConstantQIncompleteL(m, q)computes $t_{2l}(m,q)$ according to eqref{eq:t2-m-q}, i.e. $t_{2l}(m,q)}=2sum_{n=0}^mq^{ffrac{n(n+1)}{2}}$.
- theta3ConstantH: (NonNegativeInteger, C) -> C if C has Field
theta2ConstantQ4H(
m,q) computes an upper estimation of $thata_3(0,tau)$ ($q=exp(piitau)$) for positive $q$. It returns theta3ConstantL(m,q)+2*q^e/(1-q) were $e=(m+1)^2$. It corresponds to $t_{3h}(m,q^2)$ according to eqref{eq:t3-m-q} where $t_{3h}(m,q)=t_{3l}(m,q)+frac{2q^{frac{(m+1)^2}{2}}}{1-q}$
- theta3ConstantL: (NonNegativeInteger, C) -> C if C has Field
theta3Constant(
m,q) computes the truncation of the $theta_3(0,tau)$ series after them-th term, i.e. $1 + 2 sum_{n=1}^mq^{n^2}$ ($q=exp(piitau)$). It corresponds to $t_{3l}(m,q^2)$ as defined in eqref{eq:t3-m-q} where $t_{3l}(m,q)=1+2sum_{n=1}^mq^{frac{n^2}{2}}$.
- toQHTTL: (XHashTable(Matrix Integer, List Integer), XHashTable(Matrix Integer, Integer)) -> XHashTable(Matrix Integer, QEtaTruncatedLaurentSeries C)
toQHTTL(hl,estord)converts each series of the input format into a truncated Laurent series. The indices (cusp matrices) are the same as in the input.
- transformTau: (QEtaLaurentSeries C, Matrix Integer, Fraction Integer) -> QEtaLaurentSeries C
transformTau(s,trf,w)scales the series $s$ (as a series in $q=exp(piitau)$ by transformation $taumapstofrac{atau}{d}$ (where trf is given by $\mt{a}{0}{0}{d}$) in the variable $q^{frac{1}{w}}$.
- uIPiCoefficient: (PositiveInteger, Matrix Integer, C, Matrix Integer, C) -> C if C has Field
uIPiCoefficient(nn, gammaN, tauN, gammay, tauy)returns left( frac{Nc_N(c_Ntau_N+d_N) det(gamma_y)}{(c_ytau_y+d_y)^2} -frac{u_N c_y}{c_ytau_y+d_y} right). It corresponds to formula ref{eq:def-u-pi} without the w/i multiplier.
- uNCoefficient: (PositiveInteger, Matrix Integer, C) -> C
uNCoefficient(nn, gamma, tau)returns determinant(gamma) -nn*(c*ta+d)^2where gamma=matrix[[a,b],[c,d]]. It corresponds to formula ref{eq:def-u-N}.