QEtaQuotientMonoidExponentVectorsStarΒΆ
qetaqmspecs.spad line 365 [edit on github]
QEtaQuotientMonoidExponentVectorsStar helps to do computations with eta-functions and quotients of eta-functions expressed in terms of the q
-series.
- basisReduction: (List Vector Integer, Vector Integer) -> List Vector Integer
basisReduction(basis, ix)
assumes that for each vectorb
inbasis
and eachi
in 1..#ix: If ix.i
> 0, thenb
.i
> 0, if ix.i
< 0, thenb
.i
<=
0, if ix.i
= 0, then this entry is ignored. It returns anotherbasis
bas such that with the same property as the inputbasis
and additionally, for eachi
in 1..ix, length(bas.i
)^2
<=
length(basis
.i
).
etaQuotientMonoidExponentVectors: PositiveInteger -> List List Integer
- etaQuotientMonoidExponentVectorsX: PositiveInteger -> List List Integer
etaQuotientMonoidExponentVectors(
m
) returnsZZ
-vectors $r
$ (of dimensionn
, wheren=\#
(divisorsm
)). These vectors form aZZ
-basis of $R^*
(N
)$ as defined in cite{HemmeckeRadu_EtaRelations_2019
}). The version withX
at the end tries to make the resulting vector of the orders of the series small in absolute value.