QEtaQuotientMonoidExponentVectorsStarΒΆ
qetaqmspecs.spad line 365 [edit on github]
QEtaQuotientMonoidExponentVectorsStar helps to do computations with eta-functions and quotients of eta-functions expressed in terms of the q-series.
- basisReduction: (List Vector Integer, Vector Integer) -> List Vector Integer
basisReduction(basis, ix)assumes that for each vectorbinbasisand eachiin 1..#ix: If ix.i> 0, thenb.i> 0, if ix.i< 0, thenb.i<=0, if ix.i= 0, then this entry is ignored. It returns anotherbasisbas such that with the same property as the inputbasisand additionally, for eachiin 1..ix, length(bas.i)^2<=length(basis.i).
etaQuotientMonoidExponentVectors: PositiveInteger -> List List Integer
- etaQuotientMonoidExponentVectorsX: PositiveInteger -> List List Integer
etaQuotientMonoidExponentVectors(
m) returnsZZ-vectors $r$ (of dimensionn, wheren=\#(divisorsm)). These vectors form aZZ-basis of $R^*(N)$ as defined in cite{HemmeckeRadu_EtaRelations_2019}). The version withXat the end tries to make the resulting vector of the orders of the series small in absolute value.