$$\newcommand{\qPochhammer}[3][\infty]{\left( #2;#3 \right)_{#1}}$$ Via jupytext this file can be shown as a jupyter notebook.

This notebook demonstrates the computation of relations among disections (of partition functions) or rather, relations among functions that can be represented as a linear combination of (generalized) eta-quotients.

In [1]:
)cd ..
)read input/jfricas-test-support.input )quiet
The current FriCAS default directory is /home/hemmecke/backup/git/qeta 
All user variables and function definitions have been cleared.
All )browse facility databases have been cleared.
Internally cached functions and constructors have been cleared.
 )clear completely is finished.
The current FriCAS default directory is /home/hemmecke/backup/git/qeta/tmp 
In [ ]:
)set output algebra on
)set output formatted off

Init¶

In [ ]:
-------------------------------------------------------------------
--setup
-------------------------------------------------------------------
In [2]:
C ==> QQ
RKI ==> QEtaRamanujanKolbergIdentity C

)set mess type off

)read convenience.input )quiet

FINDID1(m,t) ==> (_
  ids(t+1) := findIdM1(nn, idxs, rspec, m, t, id); _
  pretty(ids(t+1), formatAsExpression() + formatWithQFactor()_
                   + formatAsNonModular() + formatExpanded()))

oo ==> infinity()$Cusp

QEtaIdeal ==> QEtaIdealHemmecke
QI1 ==> QEtaIdeal(QMOD1)

idpol(id: RKI, f:Symbol): Pol C == (_
  sspec := coSpecification id;_
  mon: Pol(C) := f * monomial(sspec, "E", "Y");_
  ipol: Pol(C) := inv coefficient id * identityPolynomial id - 'F::Pol(C);_
  mon+ipol)

)set stream calc 4
Function declaration idpol : (QEtaRamanujanKolbergIdentity(Fraction(Integer))
, Symbol) -> Polynomial(Fraction(Integer)) has been added to workspace.
In [3]:
)set mess type on
)set mess time on
In [4]:
-------------------------------------------------------------------
--endsetup
-------------------------------------------------------------------

Algebraic relations among disections¶

In [5]:
-------------------------------------------------------------------
--test:time160-algebraic-relations-5
-------------------------------------------------------------------

5-disection in $\Gamma_1(5)$¶

By an extension of Radu's method for generalized eta-quotients.

In [6]:
rspec:= eqSPEC [[1,-1]]; m:=5; t:=4;
nn := minLevelM1(rspec, m, t)
Out[6]:
PositiveInteger
Time: 0 sec
Out[6]:
\[ 5 \]
PositiveInteger
Time: 0 sec
In [7]:
aidxs := generalizedEtaFunctionIndices nn
idxs := [aidxs.i for i in 1..3]
Out[7]:
\[ \left[\left[1\right], \left[5\right], \left[5, 1\right], \left[5, 2\right]\right] \]
List(List(Integer))
Time: 0 sec
Out[7]:
\[ \left[\left[1\right], \left[5\right], \left[5, 1\right]\right] \]
List(List(Integer))
Time: 0 sec
In [8]:
id := findIdM1(nn, rspec, m, 0, idxs);
ids := [id for i in 0..4];
-- == z:=[zinhom=[[1, 0]], zhom=[], zfree=[]]
-- numOfGaps:=[0, 0]
Out[8]:
QEtaRamanujanKolbergIdentity(Fraction(Integer))
Time: 0.04 (EV) + 0.03 (OT) = 0.07 sec
Out[8]:
List(QEtaRamanujanKolbergIdentity(Fraction(Integer)))
Time: 0 sec
In [9]:
FINDID1(5,0)
-- == z:=[zinhom=[[1, 0]], zhom=[], zfree=[]]
Out[9]:
\[ \sum_{n=0}^{\infty }{a\left(5\, n\right)\, {q}^{n}}=\frac{{\left({q}^{5}; {q}^{5}\right)}_{\infty }}{{{\left(q, q\right)}_{\infty }}^{2}\, {{\left(q, {q}^{4}; {q}^{5}\right)}_{\infty }}^{8}}-3\, q\, \frac{{{\left({q}^{5}; {q}^{5}\right)}_{\infty }}^{6}\, {{\left(q, {q}^{4}; {q}^{5}\right)}_{\infty }}^{2}}{{{\left(q, q\right)}_{\infty }}^{7}} \]
Equation(OutputForm)
Time: 0.03 (EV) = 0.04 sec
In [10]:
FINDID1(5,1)
-- == z:=[zinhom=[[1, 0]], zhom=[], zfree=[]]
Out[10]:
\[ \sum_{n=0}^{\infty }{a\left(5\, n+1\right)\, {q}^{n}}=\frac{{{\left({q}^{5}; {q}^{5}\right)}_{\infty }}^{2}}{{{\left(q, q\right)}_{\infty }}^{3}\, {{\left(q, {q}^{4}; {q}^{5}\right)}_{\infty }}^{6}}+2\, q\, \frac{{{\left({q}^{5}; {q}^{5}\right)}_{\infty }}^{7}\, {{\left(q, {q}^{4}; {q}^{5}\right)}_{\infty }}^{4}}{{{\left(q, q\right)}_{\infty }}^{8}} \]
Equation(OutputForm)
Time: 0.03 (EV) = 0.03 sec
In [11]:
FINDID1(5,2)
-- == z:=[zinhom=[[1, 0]], zhom=[], zfree=[]]
Out[11]:
\[ \sum_{n=0}^{\infty }{a\left(5\, n+2\right)\, {q}^{n}}=2\, \frac{{{\left({q}^{5}; {q}^{5}\right)}_{\infty }}^{3}}{{{\left(q, q\right)}_{\infty }}^{4}\, {{\left(q, {q}^{4}; {q}^{5}\right)}_{\infty }}^{4}}-q\, \frac{{{\left({q}^{5}; {q}^{5}\right)}_{\infty }}^{8}\, {{\left(q, {q}^{4}; {q}^{5}\right)}_{\infty }}^{6}}{{{\left(q, q\right)}_{\infty }}^{9}} \]
Equation(OutputForm)
Time: 0.02 (EV) = 0.02 sec
In [12]:
FINDID1(5,3)
-- == z:=[zinhom=[[1, 0]], zhom=[], zfree=[]]
Out[12]:
\[ \sum_{n=0}^{\infty }{a\left(5\, n+3\right)\, {q}^{n}}=3\, \frac{{{\left({q}^{5}; {q}^{5}\right)}_{\infty }}^{4}}{{{\left(q, q\right)}_{\infty }}^{5}\, {{\left(q, {q}^{4}; {q}^{5}\right)}_{\infty }}^{2}}+q\, \frac{{{\left({q}^{5}; {q}^{5}\right)}_{\infty }}^{9}\, {{\left(q, {q}^{4}; {q}^{5}\right)}_{\infty }}^{8}}{{{\left(q, q\right)}_{\infty }}^{10}} \]
Equation(OutputForm)
Time: 0.03 (EV) = 0.03 sec
In [13]:
FINDID1(5,4)
Out[13]:
\[ \sum_{n=0}^{\infty }{a\left(5\, n+4\right)\, {q}^{n}}=5\, \frac{{{\left({q}^{5}; {q}^{5}\right)}_{\infty }}^{5}}{{{\left(q, q\right)}_{\infty }}^{6}} \]
Equation(OutputForm)
Time: 0.01 (EV) = 0.02 sec

Generators for relations ideal¶

In the following relations we can replace $M1$ by its corresponding eta-quotient.

In [14]:
[equationX(ids.i,'p) for i in 1..5]
Out[14]:
\[ \left[-\frac{\frac{1}{3}\, {{E}_{1}}^{7}\, \left(\sum_{n=0}^{\infty }{p\left(5\, n\right)\, {q}^{n}}\right)}{{{E}_{5}}^{6}\, {{E}_{5, 1}}^{2}\, \sqrt[120]{q}}=-\frac{1}{3}\, M1+1, \frac{\frac{1}{2}\, {{E}_{1}}^{8}\, {\sqrt[120]{q}}^{23}\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+1\right)\, {q}^{n}}\right)}{{{E}_{5}}^{7}\, {{E}_{5, 1}}^{4}}=\frac{1}{2}\, M1+1, -\frac{{{E}_{1}}^{9}\, {\sqrt[120]{q}}^{47}\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+2\right)\, {q}^{n}}\right)}{{{E}_{5}}^{8}\, {{E}_{5, 1}}^{6}}=-2\, M1+1, \frac{{{E}_{1}}^{10}\, {\sqrt[120]{q}}^{71}\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+3\right)\, {q}^{n}}\right)}{{{E}_{5}}^{9}\, {{E}_{5, 1}}^{8}}=3\, M1+1, \frac{{{E}_{1}}^{6}\, {\sqrt[24]{q}}^{19}\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+4\right)\, {q}^{n}}\right)}{{{E}_{5}}^{5}}=5\right] \]
List(Equation(Expression(Fraction(Integer))))
Time: 0.02 (OT) = 0.03 sec

We have

In [15]:
mspecs := monoidSpecifications ids.1
[etaQuotient(x, varEta) for x in mspecs]
Out[15]:
\[ \left[\left[\left[1, 5\right], \left[5, -5\right], \left[5, 1, -10\right]\right], \left[\left[1, 11\right], \left[5, -11\right], \left[5, 1, -10\right]\right]\right] \]
List(QEtaSpecification)
Time: 0 sec
Out[15]:
\[ \left[\frac{{η\left(τ\right)}^{5}}{{η\left(5\, τ\right)}^{5}\, {{η}_{5, 1}\left(τ\right)}^{10}}, \frac{{η\left(τ\right)}^{11}}{{η\left(5\, τ\right)}^{11}\, {{η}_{5, 1}\left(τ\right)}^{10}}\right] \]
List(OutputForm)
Time: 0 sec

Then we introduce $Y_k$ to replace $1/E_k$ and replace the (fractional) $q$-factor together with the generating series for $p(5n+k)$ by the variable $f_k$.

In [16]:
fs := [concat("f",string(i-1))::Symbol_
       = q^alphaOrbitInfinity(ids.i)*orbitProductX(ids.i,'p)_
           for i in 1..5]
Out[16]:
\[ \left[f0=\frac{\sum_{n=0}^{\infty }{p\left(5\, n\right)\, {q}^{n}}}{\sqrt[120]{q}}, f1={\sqrt[120]{q}}^{23}\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+1\right)\, {q}^{n}}\right), f2={\sqrt[120]{q}}^{47}\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+2\right)\, {q}^{n}}\right), f3={\sqrt[120]{q}}^{71}\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+3\right)\, {q}^{n}}\right), f4={\sqrt[24]{q}}^{19}\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+4\right)\, {q}^{n}}\right)\right] \]
List(Equation(Expression(Fraction(Integer))))
Time: 0.01 sec

With that substitution and bringing everything to one side. we obtain the following set of polynomials that represent the relations among the $f_k$ and eta-functions.

In [17]:
fsyms := [lhs x for x in fs];
mps := [idpol(id,f) for id in ids for f in fsyms]
Out[17]:
List(Expression(Fraction(Integer)))
Time: 0 sec
Compiling function idpol with type (QEtaRamanujanKolbergIdentity(Fraction(
Integer)), Symbol) -> Polynomial(Fraction(Integer)) 
Out[17]:
\[ \left[{E1}^{7}\, {Y5}^{6}\, {Y5\_1}^{2}\, f0-M1+3, {E1}^{8}\, {Y5}^{7}\, {Y5\_1}^{4}\, f1-M1-2, {E1}^{9}\, {Y5}^{8}\, {Y5\_1}^{6}\, f2-2\, M1+1, {E1}^{10}\, {Y5}^{9}\, {Y5\_1}^{8}\, f3-3\, M1-1, {E1}^{6}\, {Y5}^{5}\, f4-5\right] \]
List(Polynomial(Fraction(Integer)))
Time: 0.01 sec
In [18]:
mspecs := monoidSpecifications first ids;
eqrels := etaLaurentIdealGenerators(idxs, mspecs, mps)$QI1
Out[18]:
List(QEtaSpecification)
Time: 0 sec
Out[18]:
\[ \left[E1\, Y1-1, E5\, Y5-1, E5\_1\, Y5\_1-1, {E1}^{7}\, {Y5}^{6}\, {Y5\_1}^{2}\, f0-{E1}^{5}\, {Y5}^{5}\, {Y5\_1}^{10}+3, {E1}^{8}\, {Y5}^{7}\, {Y5\_1}^{4}\, f1-{E1}^{5}\, {Y5}^{5}\, {Y5\_1}^{10}-2, {E1}^{9}\, {Y5}^{8}\, {Y5\_1}^{6}\, f2-2\, {E1}^{5}\, {Y5}^{5}\, {Y5\_1}^{10}+1, {E1}^{10}\, {Y5}^{9}\, {Y5\_1}^{8}\, f3-3\, {E1}^{5}\, {Y5}^{5}\, {Y5\_1}^{10}-1, {E1}^{6}\, {Y5}^{5}\, f4-5\right] \]
List(Polynomial(Integer))
Time: 0.01 sec
In [19]:
assertEquals(eqrels, [_
  E1*Y1-1, E5*Y5-1, E5_1*Y5_1-1,_
  E1^7*Y5^6*Y5_1^2*f0-E1^5*Y5^5*Y5_1^10+3,_
  E1^8*Y5^7*Y5_1^4*f1-E1^5*Y5^5*Y5_1^10-2,_
  E1^9*Y5^8*Y5_1^6*f2-2*E1^5*Y5^5*Y5_1^10+1,_
  E1^10*Y5^9*Y5_1^8*f3-3*E1^5*Y5^5*Y5_1^10-1,_
  E1^6*Y5^5*f4-5])
Out[19]:
\[ \texttt{true} \]
Boolean
Time: 0 sec

Eliminate generalized eta-quotients¶

The following computation eliminates the variables $E_k$ and $Y_k$ so that only the relations among the $f_k$ survive.

In [20]:
)set message time on
algrels := algebraicRelations(idxs, eqrels, char "f")$QI1;
)set message time off
assertEquals(algrels, [_
  10*f0^2*f3^2-9*f0^2*f2*f4-9*f1*f3^2*f4+4*f0*f3*f4^2+4*f4^4,_
  5*f0*f1*f3-3*f0^2*f4-6*f2*f3*f4+4*f1*f4^2,_
  5*f0*f2*f3-6*f0*f1*f4-3*f3^2*f4+4*f2*f4^2,_
  2*f1^2-f0*f2-f3*f4, 3*f1*f2-2*f0*f3-f4^2, 2*f2^2-f1*f3-f0*f4])
-- numOfGaps:=[0, -1]
-- numOfGaps:=[0, -1]
-- TIME:=0.5
Out[20]:
List(Polynomial(Integer))
Time: 0.03 (EV) = 0.04 sec
Out[20]:
\[ \texttt{true} \]
Boolean

Selected results¶

Among the relations is one that already appears in the paper of Kolberg \cite{Kolberg_SomeIdentitiesInvolvingThePartitionFunction_1957}, namely equation (4.4).

In [21]:
algrels.5
Out[21]:
\[ -{f4}^{2}-2\, f0\, f3+3\, f1\, f2 \]
Polynomial(Integer)

Shown as a relation among the generating series, it is as follows.

In [22]:
simplify(eval(algrels.5, fs)) * q^(-7/12)
Out[22]:
\[ -q\, {\left(\sum_{n=0}^{\infty }{p\left(5\, n+4\right)\, {q}^{n}}\right)}^{2}-2\, \left(\sum_{n=0}^{\infty }{p\left(5\, n\right)\, {q}^{n}}\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+3\right)\, {q}^{n}}\right)+3\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+1\right)\, {q}^{n}}\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+2\right)\, {q}^{n}}\right) \]
Expression(Fraction(Integer))

The above is mentioned in \cite{Kolberg_SomeIdentitiesInvolvingThePartitionFunction_1957} as formula (4.4) and can also be found by doing similar computations with just pure eta-quotients, since the pairs $(p(5n), p(5n+3))$ and $(p(5n+1), p(5n+2))$ appear together.

The following identities involve other pairs. See congruence at bottom of page 86 in \cite{Kolberg_SomeIdentitiesInvolvingThePartitionFunction_1957}.

In [23]:
simplify(eval(algrels.4, fs)) * q^(-23/60)
Out[23]:
\[ -q\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+3\right)\, {q}^{n}}\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+4\right)\, {q}^{n}}\right)-\left(\sum_{n=0}^{\infty }{p\left(5\, n\right)\, {q}^{n}}\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+2\right)\, {q}^{n}}\right)+2\, {\left(\sum_{n=0}^{\infty }{p\left(5\, n+1\right)\, {q}^{n}}\right)}^{2} \]
Expression(Fraction(Integer))
In [24]:
simplify(eval(algrels.6, fs)) * q^(-47/60)
Out[24]:
\[ -\left(\sum_{n=0}^{\infty }{p\left(5\, n\right)\, {q}^{n}}\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+4\right)\, {q}^{n}}\right)-\left(\sum_{n=0}^{\infty }{p\left(5\, n+1\right)\, {q}^{n}}\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+3\right)\, {q}^{n}}\right)+2\, {\left(\sum_{n=0}^{\infty }{p\left(5\, n+2\right)\, {q}^{n}}\right)}^{2} \]
Expression(Fraction(Integer))
In [25]:
simplify(eval(algrels.3, fs)) * q^(-39/40)
simplify(eval(algrels.2, fs)) * q^(-31/40)
simplify(eval(algrels.1, fs)) * q^(-7/6)
Out[25]:
\[ 4\, q\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+2\right)\, {q}^{n}}\right)\, {\left(\sum_{n=0}^{\infty }{p\left(5\, n+4\right)\, {q}^{n}}\right)}^{2}+\left(-3\, q\, {\left(\sum_{n=0}^{\infty }{p\left(5\, n+3\right)\, {q}^{n}}\right)}^{2}-6\, \left(\sum_{n=0}^{\infty }{p\left(5\, n\right)\, {q}^{n}}\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+1\right)\, {q}^{n}}\right)\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+4\right)\, {q}^{n}}\right)+5\, \left(\sum_{n=0}^{\infty }{p\left(5\, n\right)\, {q}^{n}}\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+2\right)\, {q}^{n}}\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+3\right)\, {q}^{n}}\right) \]
Expression(Fraction(Integer))
Out[25]:
\[ 4\, q\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+1\right)\, {q}^{n}}\right)\, {\left(\sum_{n=0}^{\infty }{p\left(5\, n+4\right)\, {q}^{n}}\right)}^{2}+\left(-6\, q\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+2\right)\, {q}^{n}}\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+3\right)\, {q}^{n}}\right)-3\, {\left(\sum_{n=0}^{\infty }{p\left(5\, n\right)\, {q}^{n}}\right)}^{2}\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+4\right)\, {q}^{n}}\right)+5\, \left(\sum_{n=0}^{\infty }{p\left(5\, n\right)\, {q}^{n}}\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+1\right)\, {q}^{n}}\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+3\right)\, {q}^{n}}\right) \]
Expression(Fraction(Integer))
Out[25]:
\[ 4\, {q}^{2}\, {\left(\sum_{n=0}^{\infty }{p\left(5\, n+4\right)\, {q}^{n}}\right)}^{4}+4\, q\, \left(\sum_{n=0}^{\infty }{p\left(5\, n\right)\, {q}^{n}}\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+3\right)\, {q}^{n}}\right)\, {\left(\sum_{n=0}^{\infty }{p\left(5\, n+4\right)\, {q}^{n}}\right)}^{2}+\left(-9\, q\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+1\right)\, {q}^{n}}\right)\, {\left(\sum_{n=0}^{\infty }{p\left(5\, n+3\right)\, {q}^{n}}\right)}^{2}-9\, {\left(\sum_{n=0}^{\infty }{p\left(5\, n\right)\, {q}^{n}}\right)}^{2}\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+2\right)\, {q}^{n}}\right)\right)\, \left(\sum_{n=0}^{\infty }{p\left(5\, n+4\right)\, {q}^{n}}\right)+10\, {\left(\sum_{n=0}^{\infty }{p\left(5\, n\right)\, {q}^{n}}\right)}^{2}\, {\left(\sum_{n=0}^{\infty }{p\left(5\, n+3\right)\, {q}^{n}}\right)}^{2} \]
Expression(Fraction(Integer))
In [26]:
equationX ids.1
Out[26]:
\[ -\frac{\frac{1}{3}\, {{E}_{1}}^{7}\, \left(\sum_{n=0}^{\infty }{a\left(5\, n\right)\, {q}^{n}}\right)}{{{E}_{5}}^{6}\, {{E}_{5, 1}}^{2}\, \sqrt[120]{q}}=-\frac{1}{3}\, M1+1 \]
Equation(Expression(Fraction(Integer)))

Check relations¶

In [27]:
ps := partitionSeries(1)$QFunctions(QQ, L1 QQ)
g := [choose(5,i,ps) for i in 0..4]
Out[27]:
\[ 1+q+2\, {q}^{2}+3\, {q}^{3}+5\, {q}^{4}+O\left({q}^{5}\right) \]
QEtaLaurentSeries(Fraction(Integer))
Out[27]:
\[ \left[1+7\, q+42\, {q}^{2}+176\, {q}^{3}+627\, {q}^{4}+O\left({q}^{5}\right), 1+11\, q+56\, {q}^{2}+231\, {q}^{3}+792\, {q}^{4}+O\left({q}^{5}\right), 2+15\, q+77\, {q}^{2}+297\, {q}^{3}+1002\, {q}^{4}+O\left({q}^{5}\right), 3+22\, q+101\, {q}^{2}+385\, {q}^{3}+1255\, {q}^{4}+O\left({q}^{5}\right), 5+30\, q+135\, {q}^{2}+490\, {q}^{3}+1575\, {q}^{4}+O\left({q}^{5}\right)\right] \]
List(QEtaLaurentSeries(Fraction(Integer)))
In [28]:
algrels.5
- monomial(1,1)$L1(QQ)*g.5^2 + 3*g.2*g.3 - 2*g.1*g.4
Out[28]:
\[ -{f4}^{2}-2\, f0\, f3+3\, f1\, f2 \]
Polynomial(Integer)
Out[28]:
\[ O\left({q}^{9}\right) \]
QEtaLaurentSeries(Fraction(Integer))
In [29]:
algrels.6
- g.1*g.5 - g.2*g.4 + 2*g.3^2
Out[29]:
\[ -f0\, f4-f1\, f3+2\, {f2}^{2} \]
Polynomial(Integer)
Out[29]:
\[ O\left({q}^{9}\right) \]
QEtaLaurentSeries(Fraction(Integer))

Elimination with Sage¶

In SAGE:

R.<Y1,Y5,Y5_1,E1,E5,E5_1,f0,f1,f2,f3,f4> = PolynomialRing(QQ)
I=ideal([
  E1*Y1-1, E5*Y5-1, E5_1*Y5_1-1,
  -E1^7*Y5^6*Y5_1^2*f0+E1^5*Y5^5*Y5_1^10-3,
  -E1^8*Y5^7*Y5_1^4*f1+E1^5*Y5^5*Y5_1^10+2,
  -1/2*E1^9*Y5^8*Y5_1^6*f2+E1^5*Y5^5*Y5_1^10-1/2,
  E1^10*Y5^9*Y5_1^8*f3-3*E1^5*Y5^5*Y5_1^10-1,
  E1^6*Y5^5*f4-5])
J = I.elimination_ideal([Y1,Y5,Y5_1,E1,E5,E5_1])
J.basis

It gives:

[2*f2^2 - f1*f3 - f0*f4,
 3*f1*f2 - 2*f0*f3 - f4^2,
 2*f1^2 - f0*f2 - f3*f4,
 5*f0*f2*f3 - 6*f0*f1*f4 - 3*f3^2*f4 + 4*f2*f4^2,
 5*f0*f1*f3 - 3*f0^2*f4 - 6*f2*f3*f4 + 4*f1*f4^2,
 10*f0^2*f3^2 - 9*f0^2*f2*f4 - 9*f1*f3^2*f4 + 4*f0*f3*f4^2 + 4*f4^4]
In [30]:
-------------------------------------------------------------------
--endtest
-------------------------------------------------------------------

Zhu Cao: On Somos' disection identities¶

In [31]:
-------------------------------------------------------------------
--test:time2600-algebraic-relations-3
-------------------------------------------------------------------

(Journal of Mathematical Analysis and Applications, 2009) https://doi.org/10.1016/j.jmaa.2009.11.038

Theorem 2.1: $a(3n+2)\equiv 0 \pmod{3}$ for $a(n)$ defined by \begin{gather*} \sum_{n=0}^\infty a(n) = \qPochhammer{q}{q}^{-1} \qPochhammer{q^2}{q^2}^{-1} \end{gather*}

In [32]:
rspec:= eqSPEC [[1,-1],[2,-1]]; m:=3; t:=2;
nn := minLevelM0(rspec, m, 2)
Out[32]:
PositiveInteger
Out[32]:
\[ 6 \]
PositiveInteger

We must work with $\Gamma_0(6)$.

In [33]:
id := findIdM0(nn, rspec, m, t, etaFunctionIndices nn);
pretty(id, formatAsExpression() + formatWithQFactor() + formatAsNonModular()_
           + formatExpanded())
-- == z:=[zinhom=[[1, 1, 1]], zhom=[], zfree=[]]
-- numOfGaps:=[0, 0]
Out[33]:
QEtaRamanujanKolbergIdentity(Fraction(Integer))
Out[33]:
\[ \sum_{n=0}^{\infty }{a\left(3\, n+2\right)\, {q}^{n}}=3\, \frac{{{\left({q}^{3}; {q}^{3}\right)}_{\infty }}^{3}\, {{\left({q}^{6}; {q}^{6}\right)}_{\infty }}^{3}}{{{\left(q, q\right)}_{\infty }}^{4}\, {{\left({q}^{2}; {q}^{2}\right)}_{\infty }}^{4}} \]
Equation(OutputForm)
In [34]:
aidxs := generalizedEtaFunctionIndices 6
idxs := aidxs(1..4)
Out[34]:
\[ \left[\left[1\right], \left[2\right], \left[3\right], \left[6\right], \left[3, 1\right], \left[6, 1\right], \left[6, 2\right]\right] \]
List(List(Integer))
Out[34]:
\[ \left[\left[1\right], \left[2\right], \left[3\right], \left[6\right]\right] \]
List(List(Integer))
In [35]:
id := findIdM1(nn, rspec, m, 2, idxs);
ids := [id for i in 0..2];
-- == z:=[zinhom=[[0, 1, 1]], zhom=[], zfree=[]]
-- numOfGaps:=[0, 0]
Out[35]:
QEtaRamanujanKolbergIdentity(Fraction(Integer))
Out[35]:
List(QEtaRamanujanKolbergIdentity(Fraction(Integer)))
In [36]:
FINDID1(3,0)
FINDID1(3,1)
FINDID1(3,2)
-- == z:=[zinhom=[[2, 2, -1]], zhom=[], zfree=[]]
Out[36]:
\[ \sum_{n=0}^{\infty }{a\left(3\, n\right)\, {q}^{n}}=\frac{{{\left({q}^{2}; {q}^{2}\right)}_{\infty }}^{3}\, {{\left({q}^{3}; {q}^{3}\right)}_{\infty }}^{4}}{{{\left(q, q\right)}_{\infty }}^{7}\, {{\left({q}^{6}; {q}^{6}\right)}_{\infty }}^{2}}-3\, q\, \frac{{{\left({q}^{6}; {q}^{6}\right)}_{\infty }}^{6}}{{{\left(q, q\right)}_{\infty }}^{3}\, {{\left({q}^{2}; {q}^{2}\right)}_{\infty }}^{5}} \]
Equation(OutputForm)
-- == z:=[zinhom=[[0, 1, 1]], zhom=[], zfree=[]]
Out[36]:
\[ \sum_{n=0}^{\infty }{a\left(3\, n+1\right)\, {q}^{n}}=\frac{{{\left({q}^{2}; {q}^{2}\right)}_{\infty }}^{2}\, {\left({q}^{3}; {q}^{3}\right)}_{\infty }\, {\left({q}^{6}; {q}^{6}\right)}_{\infty }}{{{\left(q, q\right)}_{\infty }}^{6}}+3\, q\, \frac{{{\left({q}^{6}; {q}^{6}\right)}_{\infty }}^{9}}{{{\left(q, q\right)}_{\infty }}^{2}\, {{\left({q}^{2}; {q}^{2}\right)}_{\infty }}^{6}\, {{\left({q}^{3}; {q}^{3}\right)}_{\infty }}^{3}} \]
Equation(OutputForm)
-- == z:=[zinhom=[[0, 1, 1]], zhom=[], zfree=[]]
Out[36]:
\[ \sum_{n=0}^{\infty }{a\left(3\, n+2\right)\, {q}^{n}}=3\, \frac{{{\left({q}^{3}; {q}^{3}\right)}_{\infty }}^{3}\, {{\left({q}^{6}; {q}^{6}\right)}_{\infty }}^{3}}{{{\left(q, q\right)}_{\infty }}^{4}\, {{\left({q}^{2}; {q}^{2}\right)}_{\infty }}^{4}} \]
Equation(OutputForm)
In [37]:
ee := [inv(coefficient id)*qequationX(id,a[i]) for id in ids for i in 0..2]
Out[37]:
\[ \left[\frac{{{u}_{1}}^{3}\, {{u}_{2}}^{5}\, \left(\sum_{n=0}^{\infty }{{a}_{0}\left(3\, n\right)\, {q}^{n}}\right)}{{{u}_{6}}^{6}\, q}=M1-3, \frac{{{u}_{1}}^{2}\, {{u}_{2}}^{6}\, {{u}_{3}}^{3}\, \left(\sum_{n=0}^{\infty }{{a}_{1}\left(3\, n+1\right)\, {q}^{n}}\right)}{{{u}_{6}}^{9}\, q}=M1+3, \frac{{{u}_{1}}^{4}\, {{u}_{2}}^{4}\, \left(\sum_{n=0}^{\infty }{{a}_{2}\left(3\, n+2\right)\, {q}^{n}}\right)}{{{u}_{3}}^{3}\, {{u}_{6}}^{3}}=3\right] \]
List(Equation(Expression(Fraction(Integer))))
In [38]:
ee.1 - ee.2 + 2*ee.3
Out[38]:
\[ \frac{2\, {{u}_{1}}^{4}\, {{u}_{2}}^{4}\, {{u}_{6}}^{6}\, q\, \left(\sum_{n=0}^{\infty }{{a}_{2}\left(3\, n+2\right)\, {q}^{n}}\right)-{{u}_{1}}^{2}\, {{u}_{2}}^{6}\, {{u}_{3}}^{6}\, \left(\sum_{n=0}^{\infty }{{a}_{1}\left(3\, n+1\right)\, {q}^{n}}\right)+{{u}_{1}}^{3}\, {{u}_{2}}^{5}\, {{u}_{3}}^{3}\, {{u}_{6}}^{3}\, \left(\sum_{n=0}^{\infty }{{a}_{0}\left(3\, n\right)\, {q}^{n}}\right)}{{{u}_{3}}^{3}\, {{u}_{6}}^{9}\, q}=0 \]
Equation(Expression(Fraction(Integer)))
In [39]:
fsyms := [f0,f1,f2];
mps := [idpol(id,f) for id in ids for f in fsyms]
Out[39]:
List(OrderedVariableList([f0,f1,f2]))
Out[39]:
\[ \left[{E1}^{3}\, {E2}^{5}\, {Y6}^{6}\, f0-M1+3, {E1}^{2}\, {E2}^{6}\, {E3}^{3}\, {Y6}^{9}\, f1-M1-3, {E1}^{4}\, {E2}^{4}\, {Y3}^{3}\, {Y6}^{3}\, f2-3\right] \]
List(Polynomial(Fraction(Integer)))
In [40]:
mspecs := monoidSpecifications first ids;
eqrels := etaLaurentIdealGenerators(idxs, mspecs, mps)$QI1
Out[40]:
List(QEtaSpecification)
Out[40]:
\[ \left[E1\, Y1-1, E2\, Y2-1, E3\, Y3-1, E6\, Y6-1, {E1}^{3}\, {E2}^{5}\, {Y6}^{6}\, f0-{E2}^{8}\, {E3}^{4}\, {Y1}^{4}\, {Y6}^{8}+3, {E1}^{2}\, {E2}^{6}\, {E3}^{3}\, {Y6}^{9}\, f1-{E2}^{8}\, {E3}^{4}\, {Y1}^{4}\, {Y6}^{8}-3, {E1}^{4}\, {E2}^{4}\, {Y3}^{3}\, {Y6}^{3}\, f2-3\right] \]
List(Polynomial(Integer))
In [41]:
algrels := algebraicRelations(idxs, eqrels, char "f")$QI1;
assertEquals(algrels, [2*f2^4-3*f0*f1*f2^2+(-f1^3-f0^3)*f2+3*f0^2*f1^2])
-- numOfGaps:=[0, -1]
-- numOfGaps:=[0, -1]
-- numOfGaps:=[0, -1]
-- TIME:=7.92
Out[41]:
List(Polynomial(Integer))
Out[41]:
\[ \texttt{true} \]
Boolean

In SAGE:

R.<E1,Y1,E2,Y2,E3,Y3,E6,Y6,f0,f1,f2> = PolynomialRing(QQ)
I=ideal([E1*Y1-1, E2*Y2-1, E3*Y3-1, E6*Y6-1,
         -E1^3*E2^5*Y6^6*f0 + E2^8*E3^4*Y1^4*Y6^8 - 3,
         -E1^2*E2^6*E3^3*Y6^9*f1 + E2^8*E3^4*Y1^4*Y6^8 + 3,
         E1^4*E2^4*Y3^3*Y6^3*f2 - 3)
J = I.elimination_ideal([E1,Y1,E2,Y2,E3,Y3,E6,Y6])
J.basis
In [42]:
-------------------------------------------------------------------
--endtest
-------------------------------------------------------------------