RecursivePolynomialCategory(R, E, V)¶
newpoly.spad line 231 [edit on github]
R: Ring
V: OrderedSet
A category for general multi-variate polynomials with coefficients in a ring, variables in an ordered set, and exponents from an ordered abelian monoid, with a sup operation. When not constant, such a polynomial is viewed as a univariate polynomial in its main variable w. r. t. to the total ordering on the elements in the ordered set, so that some operations usually defined for univariate polynomials make sense here.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from LeftModule %
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, E)
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, E)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- coefficient: (%, E) -> R
from AbelianMonoidRing(R, E)
- coefficient: (%, List V, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, V)
- coefficient: (%, V, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, V)
- coefficients: % -> List R
from FreeModuleCategory(R, E)
- coerce: % -> % if R has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: % -> Polynomial R if V has ConvertibleTo Symbol
from CoercibleTo Polynomial R
- coerce: Fraction Integer -> % if R has Algebra Fraction Integer or R has RetractableTo Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> %
from Algebra R
- coerce: V -> %
from CoercibleFrom V
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- construct: List Record(k: E, c: R) -> %
from IndexedProductCategory(R, E)
- constructOrdered: List Record(k: E, c: R) -> %
from IndexedProductCategory(R, E)
- content: % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, E)
- content: (%, V) -> % if R has GcdDomain
from PolynomialCategory(R, E, V)
- convert: % -> InputForm if V has ConvertibleTo InputForm and R has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if V has ConvertibleTo Pattern Float and R has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if V has ConvertibleTo Pattern Integer and R has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> Polynomial R if V has ConvertibleTo Symbol
from ConvertibleTo Polynomial R
- convert: % -> String if V has ConvertibleTo Symbol and R has RetractableTo Integer
from ConvertibleTo String
- convert: Polynomial Fraction Integer -> % if R has Algebra Fraction Integer and V has ConvertibleTo Symbol
convert(p)returns the same asretract(p).
- convert: Polynomial Integer -> % if R has Algebra Integer and V has ConvertibleTo Symbol
convert(p)returns the same asretract(p).
- convert: Polynomial R -> % if V has ConvertibleTo Symbol
convert(p)returns the same asretract(p).
- D: (%, List V) -> %
from PartialDifferentialRing V
- D: (%, List V, List NonNegativeInteger) -> %
from PartialDifferentialRing V
- D: (%, V) -> %
from PartialDifferentialRing V
- D: (%, V, NonNegativeInteger) -> %
from PartialDifferentialRing V
- deepestInitial: % -> %
deepestInitial(p)returns an error ifpbelongs toR, otherwise returns the last term ofiteratedInitials(p).
- deepestTail: % -> %
deepestTail(p)returns0ifpbelongs toR, otherwise returns tail(p), iftail(p)belongs toRormvar(tail(p)) < mvar(p), otherwise returnsdeepestTail(tail(p)).
- degree: % -> E
from AbelianMonoidRing(R, E)
- degree: (%, List V) -> List NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, V)
- degree: (%, V) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, V)
- differentiate: (%, List V) -> %
from PartialDifferentialRing V
- differentiate: (%, List V, List NonNegativeInteger) -> %
from PartialDifferentialRing V
- differentiate: (%, V) -> %
from PartialDifferentialRing V
- differentiate: (%, V, NonNegativeInteger) -> %
from PartialDifferentialRing V
- discriminant: (%, V) -> % if R has CommutativeRing
from PolynomialCategory(R, E, V)
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List V, List %) -> %
from InnerEvalable(V, %)
- eval: (%, List V, List R) -> %
from InnerEvalable(V, R)
- eval: (%, V, %) -> %
from InnerEvalable(V, %)
- eval: (%, V, R) -> %
from InnerEvalable(V, R)
- exactQuotient!: (%, %) -> % if R has IntegralDomain
exactQuotient!(a, b)replacesabyexactQuotient(a, b)
- exactQuotient!: (%, R) -> % if R has IntegralDomain
exactQuotient!(p, r)replacespbyexactQuotient(p, r).
- exactQuotient: (%, %) -> % if R has IntegralDomain
exactQuotient(a, b)computes the exact quotient ofabyb, which is assumed to be a divisor ofa. No error is returned if this exact quotient fails!
- exactQuotient: (%, R) -> % if R has IntegralDomain
exactQuotient(p, r)computes the exact quotient ofpbyr, which is assumed to be a divisor ofp. No error is returned if this exact quotient fails!
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
from FiniteAbelianMonoidRing(R, E)
- extendedSubResultantGcd: (%, %) -> Record(gcd: %, coef1: %, coef2: %) if R has IntegralDomain
extendedSubResultantGcd(a, b)returns[g, ca, cb]such thatgissubResultantGcd(a, b)and we haveca * a + cb * cb = g.
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, E, R, %) -> %
from FiniteAbelianMonoidRing(R, E)
- gcd: (R, %) -> R if R has GcdDomain
gcd(r, p)returns thegcdofrand the content ofp.- gcd: List % -> % if R has GcdDomain
from GcdDomain
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
from GcdDomain
- ground?: % -> Boolean
from FiniteAbelianMonoidRing(R, E)
- ground: % -> R
from FiniteAbelianMonoidRing(R, E)
- halfExtendedSubResultantGcd1: (%, %) -> Record(gcd: %, coef1: %) if R has IntegralDomain
halfExtendedSubResultantGcd1(a, b)returns[g, ca]ifextendedSubResultantGcd(a, b)returns[g, ca, cb]otherwise produces an error.
- halfExtendedSubResultantGcd2: (%, %) -> Record(gcd: %, coef2: %) if R has IntegralDomain
halfExtendedSubResultantGcd2(a, b)returns[g, cb]ifextendedSubResultantGcd(a, b)returns[g, ca, cb]otherwise produces an error.
- hash: % -> SingleInteger if V has Hashable and R has Hashable
from Hashable
- head: % -> %
head(p)returnspifpbelongs toR, otherwise returns its leading term (monomial in the FriCAS sense), wherepis viewed as a univariate polynomial in its main variable.
- headReduce: (%, %) -> %
headReduce(a, b)returns a polynomialrsuch thatheadReduced?(r, b)holds and there exists an integeresuch thatinit(b)^e a - ris zero modulob.
- headReduced?: (%, %) -> Boolean
headReduced?(a, b)returnstrueiffdegree(head(a), mvar(b)) < mdeg(b).
- headReduced?: (%, List %) -> Boolean
headReduced?(q, lp)returnstrueiffheadReduced?(q, p)holds for everypinlp.
- iexactQuo: (R, R) -> R if R has IntegralDomain
iexactQuo(x, y)should be local but conditional
- infRittWu?: (%, %) -> Boolean
infRittWu?(a, b)returnstrueifais less thanbw.r.t. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.
- init: % -> %
init(p)returns an error ifpbelongs toR, otherwise returns its leading coefficient, wherepis viewed as a univariate polynomial in its main variable.
- initiallyReduce: (%, %) -> %
initiallyReduce(a, b)returns a polynomialrsuch thatinitiallyReduced?(r, b)holds and there exists an integeresuch thatinit(b)^e a - ris zero modulob.
- initiallyReduced?: (%, %) -> Boolean
initiallyReduced?(a, b)returnsfalseiff there exists an iterated initial ofawhich is not reducedw.r.tb.
- initiallyReduced?: (%, List %) -> Boolean
initiallyReduced?(q, lp)returnstrueiffinitiallyReduced?(q, p)holds for everypinlp.
- isExpt: % -> Union(Record(var: V, exponent: NonNegativeInteger), failed)
from PolynomialCategory(R, E, V)
- isPlus: % -> Union(List %, failed)
from PolynomialCategory(R, E, V)
- isTimes: % -> Union(List %, failed)
from PolynomialCategory(R, E, V)
- iteratedInitials: % -> List %
iteratedInitials(p)returns[]ifpbelongs toR, otherwise returns the list of the iterated initials ofp.
- lastSubResultant: (%, %) -> % if R has IntegralDomain
lastSubResultant(a, b)returns the last non-zero subresultant ofaandbwhereaandbare assumed to have the same main variablevand are viewed as univariate polynomials inv.
- latex: % -> String
from SetCategory
- LazardQuotient2: (%, %, %, NonNegativeInteger) -> % if R has IntegralDomain
LazardQuotient2(p, a, b, n)returns(a^(n-1) * p) exquo b^(n-1)assuming that this quotient does not fail.
- LazardQuotient: (%, %, NonNegativeInteger) -> % if R has IntegralDomain
LazardQuotient(a, b, n)returnsa^n exquo b^(n-1)assuming that this quotient does not fail.
- lazyPquo: (%, %) -> %
lazyPquo(a, b)returns the polynomialqsuch thatlazyPseudoDivide(a, b)returns[c, g, q, r].
- lazyPquo: (%, %, V) -> %
lazyPquo(a, b, v)returns the polynomialqsuch thatlazyPseudoDivide(a, b, v)returns[c, g, q, r].
- lazyPrem: (%, %) -> %
lazyPrem(a, b)returns the polynomialrreducedw.r.t.band such thatbdividesinit(b)^e a - rwhereeis the number of steps of this pseudo-division.
- lazyPrem: (%, %, V) -> %
lazyPrem(a, b, v)returns the polynomialrreducedw.r.t.bviewed as univariate polynomials in the variablevsuch thatbdividesinit(b)^e a - rwhereeis the number of steps of this pseudo-division.
- lazyPremWithDefault: (%, %) -> Record(coef: %, gap: NonNegativeInteger, remainder: %)
lazyPremWithDefault(a, b)returns[c, g, r]such thatr = lazyPrem(a, b)and(c^g)*r = prem(a, b).
- lazyPremWithDefault: (%, %, V) -> Record(coef: %, gap: NonNegativeInteger, remainder: %)
lazyPremWithDefault(a, b, v)returns[c, g, r]such thatr = lazyPrem(a, b, v)and(c^g)*r = prem(a, b, v).
- lazyPseudoDivide: (%, %) -> Record(coef: %, gap: NonNegativeInteger, quotient: %, remainder: %)
lazyPseudoDivide(a, b)returns[c, g, q, r]such that[c, g, r] = lazyPremWithDefault(a, b)andqis the pseudo-quotient computed in this lazy pseudo-division.
- lazyPseudoDivide: (%, %, V) -> Record(coef: %, gap: NonNegativeInteger, quotient: %, remainder: %)
lazyPseudoDivide(a, b, v)returns[c, g, q, r]such thatr = lazyPrem(a, b, v),(c^g)*r = prem(a, b, v)andqis the pseudo-quotient computed in this lazy pseudo-division.
- lazyResidueClass: (%, %) -> Record(polnum: %, polden: %, power: NonNegativeInteger)
lazyResidueClass(a, b)returns[p, q, n]wherep / q^nrepresents the residue class ofamodulobandpis reducedw.r.t.bandqisinit(b).
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
from LeftOreRing
- leadingCoefficient: % -> R
from IndexedProductCategory(R, E)
- leadingCoefficient: (%, V) -> %
leadingCoefficient(p, v)returns the leading coefficient ofp, wherepis viewed as A univariate polynomial inv.
- leadingMonomial: % -> %
from IndexedProductCategory(R, E)
- leadingSupport: % -> E
from IndexedProductCategory(R, E)
- leadingTerm: % -> Record(k: E, c: R)
from IndexedProductCategory(R, E)
- leastMonomial: % -> %
leastMonomial(p)returns an error ifpisO, otherwise, ifpbelongs toRreturns1, otherwise, the monomial ofpwith lowest degree, wherepis viewed as a univariate polynomial in its main variable.
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- linearExtend: (E -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, E)
- listOfTerms: % -> List Record(k: E, c: R)
from IndexedDirectProductCategory(R, E)
- mainCoefficients: % -> List %
mainCoefficients(p)returns an error ifpisO, otherwise, ifpbelongs toRreturns [p], otherwise returns the list of the coefficients ofp, wherepis viewed as a univariate polynomial in its main variable.
- mainContent: % -> % if R has GcdDomain
mainContent(p)returns the content ofpviewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables overR.
- mainMonomial: % -> %
mainMonomial(p)returns an error ifpisO, otherwise, ifpbelongs toRreturns1, otherwise,mvar(p)raised to the powermdeg(p).
- mainMonomials: % -> List %
mainMonomials(p)returns an error ifpisO, otherwise, ifpbelongs toRreturns [1], otherwise returns the list of the monomials ofp, wherepis viewed as a univariate polynomial in its main variable.
- mainPrimitivePart: % -> % if R has GcdDomain
mainPrimitivePart(p)returns the primitive part ofpviewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables overR.
- mainSquareFreePart: % -> % if R has GcdDomain
mainSquareFreePart(p)returns the square free part ofpviewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables overR.
- mainVariable: % -> Union(V, failed)
from MaybeSkewPolynomialCategory(R, E, V)
- map: (R -> R, %) -> %
from IndexedProductCategory(R, E)
- mapExponents: (E -> E, %) -> %
from FiniteAbelianMonoidRing(R, E)
- mdeg: % -> NonNegativeInteger
mdeg(p)returns an error ifpis0, otherwise, ifpbelongs toRreturns0, otherwise, returns the degree ofpin its main variable.
- minimumDegree: % -> E
from FiniteAbelianMonoidRing(R, E)
- minimumDegree: (%, List V) -> List NonNegativeInteger
from PolynomialCategory(R, E, V)
- minimumDegree: (%, V) -> NonNegativeInteger
from PolynomialCategory(R, E, V)
- monic?: % -> Boolean
monic?(p)returnsfalseifpbelongs toR, otherwise returnstrueiffpis monic as a univariate polynomial in its main variable.
- monicDivide: (%, %, V) -> Record(quotient: %, remainder: %)
from PolynomialCategory(R, E, V)
- monicModulo: (%, %) -> %
monicModulo(a, b)computesa mod b, ifbis monic as univariate polynomial in its main variable.
- monomial?: % -> Boolean
from IndexedProductCategory(R, E)
- monomial: (%, List V, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, V)
- monomial: (%, V, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, V)
- monomial: (R, E) -> %
from IndexedProductCategory(R, E)
- monomials: % -> List %
from MaybeSkewPolynomialCategory(R, E, V)
- multivariate: (SparseUnivariatePolynomial %, V) -> %
from PolynomialCategory(R, E, V)
- multivariate: (SparseUnivariatePolynomial R, V) -> %
from PolynomialCategory(R, E, V)
- mvar: % -> V
mvar(p)returns an error ifpbelongs toR, otherwise returns its main variablew.r.t. to the total ordering on the elements inV.
- next_subResultant2: (%, %, %, %) -> % if R has IntegralDomain
next_subResultant2(p, q, z, s)is the multivariate version of the operation \ ``next_sousResultant2`\ <l50736575646f52656d61696e64657253657175656e6365-5c2060606e6578745f736f7573526573756c74616e743260605c20>` from the PseudoRemainderSequence constructor.
- normalized?: (%, %) -> Boolean
normalized?(a, b)returnstrueiffaand its iterated initials have degree zerow.r.t. the main variable ofb
- normalized?: (%, List %) -> Boolean
normalized?(q, lp)returnstrueiffnormalized?(q, p)holds for everypinlp.
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(R, E)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable Float and V has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable Integer and V has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra Fraction Integer
from NonAssociativeAlgebra %
- pomopo!: (%, R, E, %) -> %
from FiniteAbelianMonoidRing(R, E)
- pquo: (%, %) -> %
pquo(a, b)computes the pseudo-quotient ofabyb, both viewed as univariate polynomials in the main variable ofb.
- pquo: (%, %, V) -> %
pquo(a, b, v)computes the pseudo-quotient ofabyb, both viewed as univariate polynomials inv.
- prem: (%, %) -> %
prem(a, b)computes the pseudo-remainder ofabyb, both viewed as univariate polynomials in the main variable ofb.
- prem: (%, %, V) -> %
prem(a, b, v)computes the pseudo-remainder ofabyb, both viewed as univariate polynomials inv.
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List %
from MaybeSkewPolynomialCategory(R, E, V)
- primitivePart!: % -> % if R has GcdDomain
primitivePart!(p)replacespby its primitive part.
- primitivePart: % -> % if R has GcdDomain
from PolynomialCategory(R, E, V)
- primitivePart: (%, V) -> % if R has GcdDomain
from PolynomialCategory(R, E, V)
- primPartElseUnitCanonical!: % -> % if R has IntegralDomain
primPartElseUnitCanonical!(p)replacespbyprimPartElseUnitCanonical(p).
- primPartElseUnitCanonical: % -> % if R has IntegralDomain
primPartElseUnitCanonical(p)returnsprimitivePart(p)ifRis agcd-domain, otherwiseunitCanonical(p).
- pseudoDivide: (%, %) -> Record(quotient: %, remainder: %)
pseudoDivide(a, b)computes[pquo(a, b), prem(a, b)], both polynomials viewed as univariate polynomials in the main variable ofb, ifbis not a constant polynomial.
- quasiMonic?: % -> Boolean
quasiMonic?(p)returnsfalseifpbelongs toR, otherwise returnstrueiff the initial ofplies in the base ringR.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduced?: (%, %) -> Boolean
reduced?(a, b)returnstrueiffdegree(a, mvar(b)) < mdeg(b).
- reduced?: (%, List %) -> Boolean
reduced?(q, lp)returnstrueiffreduced?(q, p)holds for everypinlp.
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
from LinearlyExplicitOver R
- reductum: % -> %
from IndexedProductCategory(R, E)
- reductum: (%, V) -> %
reductum(p, v)returns the reductum ofp, wherepis viewed as a univariate polynomial inv.
- resultant: (%, %) -> % if R has IntegralDomain
resultant(a, b)computes the resultant ofaandbwhereaandbare assumed to have the same main variablevand are viewed as univariate polynomials inv.- resultant: (%, %, V) -> % if R has CommutativeRing
from PolynomialCategory(R, E, V)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> R
from RetractableTo R
- retract: % -> V
from RetractableTo V
- retract: Polynomial Fraction Integer -> % if R has Algebra Fraction Integer and V has ConvertibleTo Symbol
retract(p)returnspas an element of the current domain, ifretractIfCan(p)does not return “failed”, otherwise an error is produced.
- retract: Polynomial Integer -> % if R has Algebra Integer and V has ConvertibleTo Symbol
retract(p)returnspas an element of the current domain, ifretractIfCan(p)does not return “failed”, otherwise an error is produced.
- retract: Polynomial R -> % if V has ConvertibleTo Symbol
retract(p)returnspas an element of the current domain, ifretractIfCan(p)does not return “failed”, otherwise an error is produced.
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- retractIfCan: % -> Union(V, failed)
from RetractableTo V
- retractIfCan: Polynomial Fraction Integer -> Union(%, failed) if R has Algebra Fraction Integer and V has ConvertibleTo Symbol
retractIfCan(p)returnspas an element of the current domain, if all its variables belong toV.
- retractIfCan: Polynomial Integer -> Union(%, failed) if R has Algebra Integer and V has ConvertibleTo Symbol
retractIfCan(p)returnspas an element of the current domain, if all its variables belong toV.
- retractIfCan: Polynomial R -> Union(%, failed) if V has ConvertibleTo Symbol
retractIfCan(p)returnspas an element of the current domain, if all its variables belong toV.
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- RittWuCompare: (%, %) -> Union(Boolean, failed)
RittWuCompare(a,b)returns"failed"ifaandbhave same rankw.r.t. Ritt and Wu Wen Tsun ordering using the refinement of Lazard, otherwise returnsinfRittWu?(a, b).
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
from PolynomialCategory(R, E, V)
- squareFreePart: % -> % if R has GcdDomain
from PolynomialCategory(R, E, V)
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- subResultantChain: (%, %) -> List % if R has IntegralDomain
subResultantChain(a, b), whereaandbare not constant polynomials with the same main variable, returns the subresultant chain ofaandb.
- subResultantGcd: (%, %) -> % if R has IntegralDomain
subResultantGcd(a, b)computes agcdofaandbwhereaandbare assumed to have the same main variablevand are viewed as univariate polynomials invwith coefficients in the fraction field of the polynomial ring generated by their other variables overR.
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List E
from FreeModuleCategory(R, E)
- supRittWu?: (%, %) -> Boolean
supRittWu?(a, b)returnstrueifais greater thanbw.r.t. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.
- tail: % -> %
tail(p)returns its reductum, wherepis viewed as a univariate polynomial in its main variable.
- totalDegree: % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, V)
- totalDegree: (%, List V) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, V)
- totalDegreeSorted: (%, List V) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, V)
- unit?: % -> Boolean if R has EntireRing
from EntireRing
- unitCanonical: % -> % if R has EntireRing
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
from EntireRing
- univariate: % -> SparseUnivariatePolynomial R
from PolynomialCategory(R, E, V)
- univariate: (%, V) -> SparseUnivariatePolynomial %
from PolynomialCategory(R, E, V)
- variables: % -> List V
from MaybeSkewPolynomialCategory(R, E, V)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(R, E)
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CoercibleTo Polynomial R if V has ConvertibleTo Symbol
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if V has ConvertibleTo InputForm and R has ConvertibleTo InputForm
ConvertibleTo Pattern Float if V has ConvertibleTo Pattern Float and R has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if V has ConvertibleTo Pattern Integer and R has ConvertibleTo Pattern Integer
ConvertibleTo Polynomial R if V has ConvertibleTo Symbol
ConvertibleTo String if V has ConvertibleTo Symbol and R has RetractableTo Integer
EntireRing if R has EntireRing
Evalable %
FiniteAbelianMonoidRing(R, E)
FreeModuleCategory(R, E)
Hashable if V has Hashable and R has Hashable
IndexedDirectProductCategory(R, E)
IndexedProductCategory(R, E)
InnerEvalable(%, %)
InnerEvalable(V, %)
InnerEvalable(V, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, E, V)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
PatternMatchable Float if R has PatternMatchable Float and V has PatternMatchable Float
PatternMatchable Integer if R has PatternMatchable Integer and V has PatternMatchable Integer
PolynomialCategory(R, E, V)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit