SquareFreeQuasiComponentPackage(R, E, V, P, TS)ΒΆ
sregset.spad line 32 [edit on github]
R: GcdDomain
V: OrderedSet
P: RecursivePolynomialCategory(R, E, V)
TS: RegularTriangularSetCategory(R, E, V, P)
A internal package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets.
- branchIfCan: (List P, TS, List P, Boolean, Boolean, Boolean, Boolean, Boolean) -> Union(Record(eq: List P, tower: TS, ineq: List P), failed)
branchIfCan(leq, ts, lineq, b1, b2, b3, b4, b5)is an internal subroutine, exported only for developement.
- infRittWu?: (List P, List P) -> Boolean
infRittWu?(lp1, lp2)is an internal subroutine, exported only for developement.
- internalInfRittWu?: (List P, List P) -> Boolean
internalInfRittWu?(lp1, lp2)is an internal subroutine, exported only for developement.
- internalSubPolSet?: (List P, List P) -> Boolean
internalSubPolSet?(lp1, lp2)returnstrueifflp1is a sub-set oflp2assuming that these lists are sorted increasinglyw.r.t. infRittWu?.
- internalSubQuasiComponent?: (TS, TS) -> Union(Boolean, failed)
internalSubQuasiComponent?(ts, us)returns a booleanbvalue if the fact the regular zero set ofuscontains that oftscan be decided (and in that casebgives this inclusion) otherwise returns"failed".
- moreAlgebraic?: (TS, TS) -> Boolean
moreAlgebraic?(ts, us)returnsfalseifftsandusare both empty, ortshas less elements thanus, or some variable is algebraicw.r.t.usand is notw.r.t.ts.
- prepareDecompose: (List P, List TS, Boolean, Boolean) -> List Record(eq: List P, tower: TS, ineq: List P)
prepareDecompose(lp, lts, b1, b2)is an internal subroutine, exported only for developement.
- removeSuperfluousCases: List Record(val: List P, tower: TS) -> List Record(val: List P, tower: TS)
removeSuperfluousCases(llpwt)is an internal subroutine, exported only for developement.
- removeSuperfluousQuasiComponents: List TS -> List TS
removeSuperfluousQuasiComponents(lts)removes fromltsanytssuch thatsubQuasiComponent?(ts, us)holds for anotherusinlts.
- startTable!: (String, String, String) -> Void
startTableGcd!(s1, s2, s3)is an internal subroutine, exported only for developement.
- stopTable!: () -> Void
stopTableGcd!()is an internal subroutine, exported only for developement.
- subCase?: (Record(val: List P, tower: TS), Record(val: List P, tower: TS)) -> Boolean
subCase?(lpwt1, lpwt2)is an internal subroutine, exported only for developement.
- subPolSet?: (List P, List P) -> Boolean
subPolSet?(lp1, lp2)returnstrueifflp1is a sub-set oflp2.
- subQuasiComponent?: (TS, List TS) -> Boolean
subQuasiComponent?(ts, lus)returnstrueiffsubQuasiComponent?(ts, us)holds for oneusinlus.
- subQuasiComponent?: (TS, TS) -> Boolean
subQuasiComponent?(ts, us)returnstrueiff internalSubQuasiComponent?(\ ``ts`\ , us) <l5175617369436f6d706f6e656e745061636b616765-696e7465726e616c5375625175617369436f6d706f6e656e743f285c206060747360605c202c20757329>` returstrue.
- subTriSet?: (TS, TS) -> Boolean
subTriSet?(ts, us)returnstrueifftsis a sub-set ofus.
- supDimElseRittWu?: (TS, TS) -> Boolean
supDimElseRittWu(ts, us)returnstrueifftshas less elements thanusotherwise iftshas higher rank thanusw.r.t. Ritt and Wu ordering.