XFreeAlgebra(vl, R)ΒΆ
xpoly.spad line 28 [edit on github]
vl: OrderedSet
R: Ring
This category specifies operations for polynomials and formal series with non-commutative variables.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, R) -> %
x * rreturns the product ofxbyr. Usefull ifRis a non-commutative Ring.- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- *: (vl, %) -> %
v * xreturns the product of a variablexbyx.
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coef: (%, %) -> R
coef(x, y)returns scalar product ofxbyy, the set of words being regarded as an orthogonal basis.
- coef: (%, FreeMonoid vl) -> R
coef(x, w)returns the coefficient of the wordwinx.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: FreeMonoid vl -> %
from CoercibleFrom FreeMonoid vl
- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> %
from CoercibleFrom R
- coerce: vl -> %
coerce(v)returnsv.
- commutator: (%, %) -> %
from NonAssociativeRng
- constant?: % -> Boolean
constant?(x)returnstrueifxis constant.
- constant: % -> R
constant(x)returns the constant term ofx.
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- lquo: (%, %) -> %
lquo(x, y)returns the left simplification ofxbyy.
- lquo: (%, FreeMonoid vl) -> %
lquo(x, w)returns the left simplification ofxby the wordw.
- lquo: (%, vl) -> %
lquo(x, v)returns the left simplification ofxby the variablev.
- map: (R -> R, %) -> %
map(fn, x)returnsSum(fn(r_i) w_i)ifxwritesSum(r_i w_i).
- mindeg: % -> FreeMonoid vl
mindeg(x)returns the little word which appears inx. Error ifx=0.
- mindegTerm: % -> Record(k: FreeMonoid vl, c: R)
mindegTerm(x)returns the term whose word ismindeg(x).
- mirror: % -> %
mirror(x)returnsSum(r_i mirror(w_i))ifxwritesSum(r_i w_i).
- monomial?: % -> Boolean
monomial?(x)returnstrueifxis a monomial
- monomial: (R, FreeMonoid vl) -> %
monomial(r, w)returns the product of the wordwby the coefficientr.
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing
from NonAssociativeAlgebra R
- quasiRegular?: % -> Boolean
quasiRegular?(x)returntrueifconstant(x)is zero.
- quasiRegular: % -> %
quasiRegular(x)returnxminus its constant term.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- retract: % -> FreeMonoid vl
from RetractableTo FreeMonoid vl
- retract: % -> R
from RetractableTo R
- retractIfCan: % -> Union(FreeMonoid vl, failed)
from RetractableTo FreeMonoid vl
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- rquo: (%, %) -> %
rquo(x, y)returns the right simplification ofxbyy.
- rquo: (%, FreeMonoid vl) -> %
rquo(x, w)returns the right simplification ofxbyw.
- rquo: (%, vl) -> %
rquo(x, v)returns the right simplification ofxby the variablev.
- sample: %
from AbelianMonoid
- sh: (%, %) -> % if R has CommutativeRing
sh(x, y)returns the shuffle-product ofxbyy. This multiplication is associative and commutative.
- sh: (%, NonNegativeInteger) -> % if R has CommutativeRing
sh(x, n)returns the shuffle power ofxto then.
- subtractIfCan: (%, %) -> Union(%, failed)
- varList: % -> List vl
varList(x)returns the list of variables which appear inx.
- zero?: % -> Boolean
from AbelianMonoid
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(R, R)
Module R if R has CommutativeRing
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has noZeroDivisors
XAlgebra R