CongruenceSubgroup¶
qetagamma.spad line 87 [edit on github]
CongruenceSubgroup is the category of congruence subgroups $Gamma$ of $L2Z such as $Gamma_0(N) and $Gamma_1(N)$.
- cusps: () -> List Cusp
- If $Gamma$ denotes this domain, then cusps() returns representatives for all the (inequivalent) cusps for GAMMA sorted by their size as rational numbers with infinity being the biggest cusp. Note that cusps()=[cusp( - x(1,1),- x(2,1)) for- xin doubleCosetRepresentatives()].
- cuspToMatrix: Cusp -> Matrix Integer
- For cusp=(a:c), cuspToMatrix(cusp) returns a matrix gamma=[[a, - b],[- c,- d]] corresponding to the cusp (a:c) of this domain. We assume that a/c is a normalized cusp, i.e. cusp=normalizeCusp(cusp).
- dimensionOfCuspForms: Integer -> NonNegativeInteger
- dimensionOfCuspForms(w)computes the dimension of $- S_w(Gamma)$. See https://www.wstein.org/books/modform/modform/dimension_formulas.html
- dimensionOfEisensteinSubspace: Integer -> NonNegativeInteger
- dimensionOfEisensteinSubspace(w)computes the dimension of $E_w(Gamma)$, the Eisenstein subspace of modular forms. See https://www.wstein.org/books/modform/modform/dimension_formulas.html
- dimensionOfModularForms: Integer -> NonNegativeInteger
- dimensionOfModularForms(w)computes the dimension of $- M_w(Gamma)$. See https://www.wstein.org/books/modform/modform/dimension_formulas.html
- doubleCosetRepresentatives: () -> List Matrix Integer
- doubleCosetRepresentatives()returns a list of double coset representatives of $Gamma backslash- SL_2(- ZZ) /- SL_2(- ZZ)_infty$ where $- SL_2(- ZZ)_infty$ are matrices of the form [[1,- h],[0,1]] (or [[- -1,- h],[0,- -1]] with- hbeing an integer. Note that cusps()=[cusp(- x(1,1),- x(2,1)) for- xin doubleCosetRepresentatives()].
- equivalentCusps?: (Cusp, Cusp) -> Boolean
- equivalentCusps?(cusp1, cusp2)returns- trueiff the cusp cusp1=(a:c) is equivalent to cusp2=(u:w) modulo the action of this domain.
- even?: () -> Boolean
- even?()returns member?(matrix [[- -1,0],[0,- -1]]).
- genus: () -> NonNegativeInteger
- genus()returns the genus of the congruence subgroup $Gamma$. For $Gamma_0(- nn)$, it corresponds to the series https://oeis.- org/A001617. cite[- p.- ~25]{- Shimura_ArithmeticTheory_1994} and Proposition 1.40. See also https://www.wstein.org/books/modform/modform/dimension_formulas.html See Section “Modular Formas for $Gamma_1(- N)$” in cite{- Stein_ModularForms_2007}. level: ()- ->- PPlevel() returns the level of the congruence subgroup.
- index: () -> PositiveInteger
- If $Gamma$ denotes this domain, then index() computes the index of $Gamma$ in SL2Z. 
- member?: Matrix Integer -> Boolean
- member?(mat)returns- trueif- matis an element of $Gamma$. It is assumed that determinant(- mat)- =1.
- normalizeCusp: Cusp -> Cusp
- normalizeCusp(cusp)normalizes the- cuspto another (equivalent modulo $Gamma$- cusp(u:w) such that if- cuspis equivalent to infinity, then infinity() is returned; if- cuspis equivalent to (0:1), (0:1) is returned. Otherwise the numerator and denominator are positive and small and coprime.
- nu2: () -> Integer
- nu2()returns the number of $Gamma$ inequivalent elliptic points of order 2. See cite[- p.- ~25]{- Shimura_ArithmeticTheory_1994} and Proposition 1.40 and mu_{1,3}(- n) of https://www.wstein.org/books/modform/modform/dimension_formulas.html.
- nu3: () -> Integer
- nu3()returns the number of $Gamma$ inequivalent elliptic points of order 3. See See cite[- p.- ~25]{- Shimura_ArithmeticTheory_1994} and Proposition 1.40 and mu_{1,3}(- n) of https://www.wstein.org/books/modform/modform/dimension_formulas.html.
- numberOfCusps: () -> PositiveInteger
- numberOfCusps()returns the number of cusps of $Gamma$. cite[- p.- ~25]{- Shimura_ArithmeticTheory_1994} and Proposition 1.40 and also https://www.wstein.org/books/modform/modform/dimension_formulas.- html#id2.
- projectiveIndex: () -> PositiveInteger
- projectivIndex() computes the index of the image of $Gamma$ in PSL2Z. 
- rightCosetRepresentatives: () -> List Matrix Integer
- rightCosetRepresentatives()returns a list of right coset representatives of $Gamma backslash- SL_2(- ZZ)$.
- width: Cusp -> PositiveInteger
- If GAMMA denotes this domain, then width(cusp) returns the width of the cusp=(a:c) of GAMMA. 
- width: Matrix Integer -> PositiveInteger
- width(gamma)=width(cusp(- gamma)).