EtaQuotient(C, L)¶
EtaQuotient implements the (multiplicative) group of eta-functions in their expansion at infinity. Elements can be represented as Laurent series in q with a prefactor of q^(n/24), (n=0,…,23). Note that this domain keeps the “fractional part” always separate from the “series part” even when the fractional part is an integer.
- 1: %
- from MagmaWithUnit
- *: (%, %) -> %
- from Magma
- /: (%, %) -> %
- from Group
- =: (%, %) -> Boolean
- from BasicType
- ^: (%, Integer ) -> %
- from Group
- ^: (%, NonNegativeInteger ) -> %
- from MagmaWithUnit
- ^: (%, PositiveInteger ) -> %
- from Magma
- ~=: (%, %) -> Boolean
- from BasicType
- coerce: % -> OutputForm
- from CoercibleTo OutputForm
- coerce: C -> %
coerce(c)returns an element of this domain corresponding toc.- commutator: (%, %) -> %
- from Group
- conjugate: (%, %) -> %
- from Group
- eta: PositiveInteger -> %
eta(n)returnsq^(n/24)*prod_{k=1}^infty (1-q^{kn}).
- etaPower: (PositiveInteger , Integer ) -> %
etaPower(d, e)returns eta(d)^e.
- etaQuotient: (List Integer , List Integer ) -> %
etaQuotient(divs, r)returns the $eta$-quotient product(eta(divs.i)^(r.i),i=1..#divs). It is assumed that the lengths of the input lists are equal.- hash: % -> SingleInteger
- from SetCategory
- hashUpdate!: (HashState , %) -> HashState
- from SetCategory
- inv: % -> %
- from Group
- latex: % -> String
- from SetCategory
- leftPower: (%, NonNegativeInteger ) -> %
- from MagmaWithUnit
- leftPower: (%, PositiveInteger ) -> %
- from Magma
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit
- one?: % -> Boolean
- from MagmaWithUnit
- prefactor: % -> NonNegativeInteger
prefactor(x)returns the exponent times 24 of the fractionalqpower ofxwhereqis the variable ofL. The returned value is in the range 0..23, because integer powers ofqare moved to the series part.
- q24: Integer -> %
q24(n)returnsq^(n/24).- recip: % -> Union(%, failed)
- from MagmaWithUnit
- retract: % -> L
retract(x)aborts with error if prefactor is not divisible by 24. Otherwise it returns q^r*series(x) where r=prefactor(x)/24andqis the variable ofL.- rightPower: (%, NonNegativeInteger ) -> %
- from MagmaWithUnit
- rightPower: (%, PositiveInteger ) -> %
- from Magma
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit
- sample: %
- from MagmaWithUnit
- series: % -> L
series(x)returns the Laurent series part ofx.x=q24(prefactorx)*series(x)
- toEta: Polynomial C -> %
toEta(p)assumes that all variables are of the formEiwith the letterEand a positive numberi. In the polynomialpthe powers Ei^ni will be replaced by eta(i)^ni. Iflis the leading monomialp, then it is assumed that prefactor(toEta(l))=prefactor(toEta(m)) for every monomialmofp. If