EtaQuotientGamma(C, mx, CX, xi, LX)ΒΆ
- C: Join(Algebra Fraction Integer , IntegralDomain )
- mx: PositiveInteger
- CX: Algebra C
- xi: CX
- LX: UnivariateLaurentSeriesCategory CX
EtaQuotientGamma(C, mx, CX, xi, LX) represents the semigroup of eta-quotient expansions at gamma. The eta quotient need not be a modular function, but the (c*tau+d) factor is always ignored.
- =: (%, %) -> Boolean
- from BasicType
- ~=: (%, %) -> Boolean
- from BasicType
- coerce: % -> OutputForm
- from CoercibleTo OutputForm
- etaQuotient: SymbolicEtaQuotientGamma -> %
etaQuotient(s)represents the expansion ofg_r(gamma tau) in terms ofx= exp(2 piitau/w) where w=width(m,c),r= exponents(s), andg_ris defined by $g_r(tau) = prod_{delta in divisors(s)} eta(delta gamma tau)^{r_{delta}}$.
- eulerExpansion: % -> LX
eulerExpansion(e)returns the series expansion ofewithout any prefactor. Thetrueseries expansion (in terms of fractionalxpowers ofeis given bylc*x^p*swherelc= leadingCoefficiente,x= exp(2 piitau/w) where w=width(m,c),s= symbolicEtaQuotiente,c= gamma(s)(2,1),p= (xExponents) / 24,s= eulerExpansione.
- eulerFunctionPower: (PositiveInteger , NonNegativeInteger , Integer ) -> LX
eulerFunctionPower(u, v, p)computes eulerFunction(1)^pand replaces q=monomial(1,1)$LCby monomial(xi^v,u)$LX
- expansion: % -> LX
expansion(e)should only be called if modular?(e) holds, otherwise it might return an error. expansion(e) returns the series expansion ofein terms ofx= exp(2 piitau/w) where w=width(m,c),c= gamma(symbolicEtaQuotiente)(2,1).- hash: % -> SingleInteger
- from SetCategory
- hashUpdate!: (HashState , %) -> HashState
- from SetCategory
- latex: % -> String
- from SetCategory
- leadingCoefficient: % -> CX
leadingCoefficient(x)returns the coefficient corresponding to the smallestq-power with non-zero coefficient.
- modular?: % -> Boolean
modular?(x)returnstrueif the eta quotient is a modular function forGamma0(nn) where nn=level(symbolicEtaQuotientx).
- substituteVariable: (PositiveInteger , NonNegativeInteger ) -> Record(k: Integer , c: C) -> Record(k: Integer , c: CX)
- Is the function [
k,c] +-> [u*k, xi^v*c]
- symbolicEtaQuotient: % -> SymbolicEtaQuotientGamma
symbolicEtaQuotient(x)returns meta-data corresponding tox.