Finite0Series CΒΆ
qetaser.spad line 261 [edit on github]
Finite0Series represents Laurent series such that if x
is such a series and order(x
)>0
then x=0
. Quotients of Dedekind eta-functions that are modular functions that only have a pole (if any) at infinity, can be represented as such series.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from LeftModule %
- *: (%, C) -> %
from RightModule C
- *: (%, Fraction Integer) -> % if C has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (C, %) -> %
from LeftModule C
- *: (Fraction Integer, %) -> % if C has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> % if C has Field
from Field
- /: (%, C) -> % if C has Field
from AbelianMonoidRing(C, Integer)
- ^: (%, %) -> % if C has Algebra Fraction Integer
- ^: (%, Fraction Integer) -> % if C has Algebra Fraction Integer
from RadicalCategory
- ^: (%, Integer) -> % if C has Field
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- approximate: (%, Integer) -> C if C has coerce: Symbol -> C and C has ^: (C, Integer) -> C
from UnivariatePowerSeriesCategory(C, Integer)
- associates?: (%, %) -> Boolean if C has IntegralDomain
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- center: % -> C
from UnivariatePowerSeriesCategory(C, Integer)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if C has CharacteristicNonZero
- choose: (PositiveInteger, NonNegativeInteger, %) -> %
from QEtaLaurentSeriesCategory C
- coefficient: (%, Integer) -> C
from AbelianMonoidRing(C, Integer)
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: % -> QEtaLaurentSeries C
coerce(x)
returns the elementx
as a QEta Laurent series.- coerce: % -> UnivariateLaurentSeries(C, QUOTE q, Sel(C, Zero))
from QEtaLaurentSeriesCategory C
- coerce: C -> %
from Algebra C
- coerce: Fraction Integer -> % if C has Algebra Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: QEtaLaurentSeries C -> %
coerce(x)
assumes that the QEta Laurent seriesx
belongs to the subalgebra of series with the properties of this damain. No check is made.- coerce: QEtaTaylorSeries C -> %
from CoercibleFrom QEtaTaylorSeries C
- coerce: UnivariateLaurentSeries(C, QUOTE q, Sel(C, Zero)) -> %
from QEtaLaurentSeriesCategory C
- commutator: (%, %) -> %
from NonAssociativeRng
- complete: % -> %
from PowerSeriesCategory(C, Integer, SingletonAsOrderedSet)
- construct: List Record(k: Integer, c: C) -> %
from IndexedProductCategory(C, Integer)
- constructOrdered: List Record(k: Integer, c: C) -> %
from IndexedProductCategory(C, Integer)
- D: % -> % if C has *: (Integer, C) -> C
from DifferentialRing
- D: (%, List Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- D: (%, List Symbol, List NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- D: (%, NonNegativeInteger) -> % if C has *: (Integer, C) -> C
from DifferentialRing
- D: (%, Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- D: (%, Symbol, NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- degree: % -> Integer
from PowerSeriesCategory(C, Integer, SingletonAsOrderedSet)
- differentiate: % -> % if C has *: (Integer, C) -> C
from DifferentialRing
- differentiate: (%, List Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- differentiate: (%, NonNegativeInteger) -> % if C has *: (Integer, C) -> C
from DifferentialRing
- differentiate: (%, Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- differentiate: (%, Symbol, NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- divide: (%, %) -> Record(quotient: %, remainder: %) if C has Field
from EuclideanDomain
- elt: (%, %) -> %
from Eltable(%, %)
- elt: (%, Integer) -> C
from UnivariatePowerSeriesCategory(C, Integer)
- euclideanSize: % -> NonNegativeInteger if C has Field
from EuclideanDomain
- eval: (%, C) -> Stream C if C has ^: (C, Integer) -> C
from UnivariatePowerSeriesCategory(C, Integer)
- expressIdealMember: (List %, %) -> Union(List %, failed) if C has Field
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed) if C has IntegralDomain
from EntireRing
- extend: (%, Integer) -> %
from UnivariatePowerSeriesCategory(C, Integer)
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if C has Field
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if C has Field
from EuclideanDomain
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if C has Field
from GcdDomain
- hash: % -> SingleInteger
from SetCategory
- hashUpdate!: (HashState, %) -> HashState
from SetCategory
- integrate: % -> % if C has Algebra Fraction Integer
- integrate: (%, Symbol) -> % if C has variables: C -> List Symbol and C has Algebra Fraction Integer and C has integrate: (C, Symbol) -> C
- inv: % -> % if C has Field
from DivisionRing
- latex: % -> String
from SetCategory
- laurent: (Integer, QEtaTaylorSeries C) -> %
from QEtaLaurentSeriesCategory C
- laurent: (Integer, Stream C) -> %
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if C has Field
from LeftOreRing
- leadingCoefficient: % -> C
from PowerSeriesCategory(C, Integer, SingletonAsOrderedSet)
- leadingMonomial: % -> %
from PowerSeriesCategory(C, Integer, SingletonAsOrderedSet)
- leadingSupport: % -> Integer
from IndexedProductCategory(C, Integer)
- leadingTerm: % -> Record(k: Integer, c: C)
from IndexedProductCategory(C, Integer)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (C -> C, %) -> %
from IndexedProductCategory(C, Integer)
- monomial?: % -> Boolean
from IndexedProductCategory(C, Integer)
- monomial: (C, Integer) -> %
from IndexedProductCategory(C, Integer)
- multiEuclidean: (List %, %) -> Union(List %, failed) if C has Field
from EuclideanDomain
- multiplyCoefficients: (Integer -> C, %) -> %
- multiplyExponents: (%, PositiveInteger) -> %
from UnivariatePowerSeriesCategory(C, Integer)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> Integer
from UnivariatePowerSeriesCategory(C, Integer)
- order: (%, Integer) -> Integer
from UnivariatePowerSeriesCategory(C, Integer)
- pole?: % -> Boolean
from PowerSeriesCategory(C, Integer, SingletonAsOrderedSet)
- principalIdeal: List % -> Record(coef: List %, generator: %) if C has Field
from PrincipalIdealDomain
- qetaCoefficient: (%, Integer) -> C
from QEtaGradedAlgebra C
- qetaGrade: % -> Integer
from QEtaGradedAlgebra C
- qetaLeadingCoefficient: % -> C
from QEtaGradedAlgebra C
- qetaTaylorRep: % -> QEtaTaylorSeries C
from QEtaLaurentSeriesCategory C
- quo: (%, %) -> % if C has Field
from EuclideanDomain
- rationalFunction: (%, Integer) -> Fraction Polynomial C if C has IntegralDomain
- rationalFunction: (%, Integer, Integer) -> Fraction Polynomial C if C has IntegralDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reductum: % -> %
from IndexedProductCategory(C, Integer)
- rem: (%, %) -> % if C has Field
from EuclideanDomain
- removeZeroes: % -> %
from QEtaLaurentSeriesCategory C
- removeZeroes: (Integer, %) -> %
from QEtaLaurentSeriesCategory C
- retract: % -> QEtaTaylorSeries C
from RetractableTo QEtaTaylorSeries C
- retractIfCan: % -> Union(QEtaTaylorSeries C, failed)
from RetractableTo QEtaTaylorSeries C
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sizeLess?: (%, %) -> Boolean if C has Field
from EuclideanDomain
- sqrt: % -> % if C has Algebra Fraction Integer
from RadicalCategory
- squareFree: % -> Factored % if C has Field
- squareFreePart: % -> % if C has Field
- subtractIfCan: (%, %) -> Union(%, failed)
- terms: % -> Stream Record(k: Integer, c: C)
from UnivariatePowerSeriesCategory(C, Integer)
- traceout: NonNegativeInteger -> % -> OutputForm
from QEtaAlgebra C
- truncate: (%, Integer) -> %
from UnivariatePowerSeriesCategory(C, Integer)
- truncate: (%, Integer, Integer) -> %
from UnivariatePowerSeriesCategory(C, Integer)
- unit?: % -> Boolean if C has IntegralDomain
from EntireRing
- unitCanonical: % -> % if C has IntegralDomain
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if C has IntegralDomain
from EntireRing
- variable: % -> Symbol
from UnivariatePowerSeriesCategory(C, Integer)
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
Algebra C
Algebra Fraction Integer if C has Algebra Fraction Integer
ArcHyperbolicFunctionCategory if C has Algebra Fraction Integer
ArcTrigonometricFunctionCategory if C has Algebra Fraction Integer
BiModule(%, %)
BiModule(C, C)
BiModule(Fraction Integer, Fraction Integer) if C has Algebra Fraction Integer
canonicalsClosed if C has Field
canonicalUnitNormal if C has Field
CharacteristicNonZero if C has CharacteristicNonZero
CharacteristicZero if C has CharacteristicZero
CoercibleFrom QEtaTaylorSeries C
DifferentialRing if C has *: (Integer, C) -> C
DivisionRing if C has Field
ElementaryFunctionCategory if C has Algebra Fraction Integer
Eltable(%, %)
EntireRing if C has IntegralDomain
EuclideanDomain if C has Field
HyperbolicFunctionCategory if C has Algebra Fraction Integer
IndexedProductCategory(C, Integer)
IntegralDomain if C has IntegralDomain
LeftModule Fraction Integer if C has Algebra Fraction Integer
LeftOreRing if C has Field
Module %
Module C
Module Fraction Integer if C has Algebra Fraction Integer
noZeroDivisors if C has IntegralDomain
PartialDifferentialRing Symbol if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
PowerSeriesCategory(C, Integer, SingletonAsOrderedSet)
PrincipalIdealDomain if C has Field
RadicalCategory if C has Algebra Fraction Integer
RetractableTo QEtaTaylorSeries C
RightModule Fraction Integer if C has Algebra Fraction Integer
TranscendentalFunctionCategory if C has Algebra Fraction Integer
TrigonometricFunctionCategory if C has Algebra Fraction Integer
UniqueFactorizationDomain if C has Field
UnivariateLaurentSeriesCategory C
UnivariatePowerSeriesCategory(C, Integer)