QEtaTaylorSeries CΒΆ
qetaser.spad line 152 [edit on github]
- C: Ring 
QEtaTaylorSeries(C) is in fact identical with UnivariateTaylorSeries(C, 'q, 0). We just fix the variable to the symbol q and the center to zero.
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (%, C) -> %
- from RightModule C 
- *: (%, Fraction Integer) -> % if C has Algebra Fraction Integer
- from RightModule Fraction Integer 
- *: (C, %) -> %
- from LeftModule C 
- *: (Fraction Integer, %) -> % if C has Algebra Fraction Integer
- from LeftModule Fraction Integer 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- /: (%, C) -> % if C has Field
- from AbelianMonoidRing(C, NonNegativeInteger) 
- ^: (%, %) -> % if C has Algebra Fraction Integer
- ^: (%, C) -> % if C has Field
- ^: (%, Fraction Integer) -> % if C has Algebra Fraction Integer
- from RadicalCategory 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- approximate: (%, NonNegativeInteger) -> C if C has ^: (C, NonNegativeInteger) -> C and C has coerce: Symbol -> C
- associates?: (%, %) -> Boolean if C has IntegralDomain
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- center: % -> C
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- charthRoot: % -> Union(%, failed) if C has CharacteristicNonZero
- coefficient: (%, NonNegativeInteger) -> C
- from AbelianMonoidRing(C, NonNegativeInteger) 
- coefficients: % -> Stream C
- coerce: % -> % if C has CommutativeRing
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: C -> % if C has CommutativeRing
- from Algebra C 
- coerce: Fraction Integer -> % if C has Algebra Fraction Integer
- coerce: Integer -> %
- from NonAssociativeRing 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- complete: % -> %
- from PowerSeriesCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- construct: List Record(k: NonNegativeInteger, c: C) -> %
- from IndexedProductCategory(C, NonNegativeInteger) 
- constructOrdered: List Record(k: NonNegativeInteger, c: C) -> %
- from IndexedProductCategory(C, NonNegativeInteger) 
- D: % -> % if C has *: (NonNegativeInteger, C) -> C
- from DifferentialRing 
- D: (%, List Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- D: (%, List Symbol, List NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- D: (%, NonNegativeInteger) -> % if C has *: (NonNegativeInteger, C) -> C
- from DifferentialRing 
- D: (%, Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- D: (%, Symbol, NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- degree: % -> NonNegativeInteger
- from PowerSeriesCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- differentiate: % -> % if C has *: (NonNegativeInteger, C) -> C
- from DifferentialRing 
- differentiate: (%, List Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- differentiate: (%, NonNegativeInteger) -> % if C has *: (NonNegativeInteger, C) -> C
- from DifferentialRing 
- differentiate: (%, Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- differentiate: (%, Symbol, NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- elt: (%, %) -> %
- from Eltable(%, %) 
- elt: (%, NonNegativeInteger) -> C
- eval: (%, C) -> Stream C if C has ^: (C, NonNegativeInteger) -> C
- exponentGcd: (%, PositiveInteger) -> Integer
- from QEtaTaylorSeriesCategory C 
- exquo: (%, %) -> Union(%, failed) if C has IntegralDomain
- from EntireRing 
- extend: (%, NonNegativeInteger) -> %
- integrate: % -> % if C has Algebra Fraction Integer
- from UnivariateSeriesWithRationalExponents(C, NonNegativeInteger) 
- integrate: (%, Symbol) -> % if C has variables: C -> List Symbol and C has Algebra Fraction Integer and C has integrate: (C, Symbol) -> C
- from UnivariateSeriesWithRationalExponents(C, NonNegativeInteger) 
- latex: % -> String
- from SetCategory 
- leadingCoefficient: % -> C
- from PowerSeriesCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- leadingMonomial: % -> %
- from PowerSeriesCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- leadingTerm: % -> Record(k: NonNegativeInteger, c: C)
- from IndexedProductCategory(C, NonNegativeInteger) 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- map: (C -> C, %) -> %
- from IndexedProductCategory(C, NonNegativeInteger) 
- mapn: ((C, Integer) -> C, %, Integer) -> %
- from QEtaTaylorSeriesCategory C 
- monomial?: % -> Boolean
- from IndexedProductCategory(C, NonNegativeInteger) 
- monomial: (C, NonNegativeInteger) -> %
- from IndexedProductCategory(C, NonNegativeInteger) 
- multiplyCoefficients: (Integer -> C, %) -> %
- multiplyExponents: (%, Fraction Integer) -> %
- multiplyExponents(x,w)multiplies all exponents of the series by the rational number- w. The user is responsible that the resulting Puiseux series is indeed a Taylor series, i.e. has integer exponents.
- multiplyExponents: (%, PositiveInteger) -> %
- multisect: (Integer, Integer, %) -> %
- from QEtaTaylorSeriesCategory C 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- order: % -> NonNegativeInteger
- order: (%, NonNegativeInteger) -> NonNegativeInteger
- plenaryPower: (%, PositiveInteger) -> % if C has Algebra Fraction Integer or C has CommutativeRing
- from NonAssociativeAlgebra % 
- pole?: % -> Boolean
- from PowerSeriesCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- polynomial: (%, NonNegativeInteger) -> Polynomial C
- polynomial: (%, NonNegativeInteger, NonNegativeInteger) -> Polynomial C
- quoByVar: % -> %
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- reductum: % -> %
- from IndexedProductCategory(C, NonNegativeInteger) 
- revert: % -> %
- from QEtaTaylorSeriesCategory C 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from AbelianMonoid 
- series: Stream C -> %
- series: Stream Record(k: NonNegativeInteger, c: C) -> %
- sqrt: % -> % if C has Algebra Fraction Integer
- from RadicalCategory 
- subtractIfCan: (%, %) -> Union(%, failed)
- terms: % -> Stream Record(k: NonNegativeInteger, c: C)
- truncate: (%, NonNegativeInteger) -> %
- truncate: (%, NonNegativeInteger, NonNegativeInteger) -> %
- unit?: % -> Boolean if C has IntegralDomain
- from EntireRing 
- unitCanonical: % -> % if C has IntegralDomain
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if C has IntegralDomain
- from EntireRing 
- zero?: % -> Boolean
- from AbelianMonoid 
- zeroCheckingChoose: (PositiveInteger, %) -> %
- zeroCheckingChoose(m, x)for a Taylor series $sum_{- n=0}^infty- c(- n)- q^{- m- n}$ returns $sum_{- n=0}^infty- c(- n)- q^n$ and signals an error if the input series has non-zero coefficients at- q^kwhen- kis not a multiple of- m.
- zeroCheckingChoose: (PositiveInteger, Stream C) -> Stream C
- zeroCheckingChoose(d, st)returns the substream of st consisting of every- d-th entry, i.e. it checks whether the first- d-1 entries are zero and returns the next, then repeat that process with the rest of st.
AbelianMonoidRing(C, NonNegativeInteger)
Algebra % if C has CommutativeRing
Algebra C if C has CommutativeRing
Algebra Fraction Integer if C has Algebra Fraction Integer
ArcHyperbolicFunctionCategory if C has Algebra Fraction Integer
ArcTrigonometricFunctionCategory if C has Algebra Fraction Integer
BiModule(%, %)
BiModule(C, C)
BiModule(Fraction Integer, Fraction Integer) if C has Algebra Fraction Integer
CharacteristicNonZero if C has CharacteristicNonZero
CharacteristicZero if C has CharacteristicZero
CommutativeRing if C has CommutativeRing
CommutativeStar if C has CommutativeRing
DifferentialRing if C has *: (NonNegativeInteger, C) -> C
ElementaryFunctionCategory if C has Algebra Fraction Integer
Eltable(%, %)
EntireRing if C has IntegralDomain
HyperbolicFunctionCategory if C has Algebra Fraction Integer
IndexedProductCategory(C, NonNegativeInteger)
IntegralDomain if C has IntegralDomain
LeftModule Fraction Integer if C has Algebra Fraction Integer
Module % if C has CommutativeRing
Module C if C has CommutativeRing
Module Fraction Integer if C has Algebra Fraction Integer
NonAssociativeAlgebra % if C has CommutativeRing
NonAssociativeAlgebra C if C has CommutativeRing
NonAssociativeAlgebra Fraction Integer if C has Algebra Fraction Integer
noZeroDivisors if C has IntegralDomain
PartialDifferentialRing Symbol if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
PowerSeriesCategory(C, NonNegativeInteger, SingletonAsOrderedSet)
RadicalCategory if C has Algebra Fraction Integer
RightModule Fraction Integer if C has Algebra Fraction Integer
TranscendentalFunctionCategory if C has Algebra Fraction Integer
TrigonometricFunctionCategory if C has Algebra Fraction Integer
TwoSidedRecip if C has CommutativeRing
UnivariatePowerSeriesCategory(C, NonNegativeInteger)
UnivariateSeriesWithRationalExponents(C, NonNegativeInteger)