QEtaTaylorSeriesCategory CΒΆ
qetaser.spad line 114 [edit on github]
C: Ring
QEtaTaylorSeriesCategory is a UnivariateTaylorSeriesCategory extended by a few functions that we need in the computation of our package.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from LeftModule %
- *: (%, C) -> %
from RightModule C
- *: (%, Fraction Integer) -> % if C has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (C, %) -> %
from LeftModule C
- *: (Fraction Integer, %) -> % if C has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, C) -> % if C has Field
from AbelianMonoidRing(C, NonNegativeInteger)
- ^: (%, %) -> % if C has Algebra Fraction Integer
- ^: (%, C) -> % if C has Field
- ^: (%, Fraction Integer) -> % if C has Algebra Fraction Integer
from RadicalCategory
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- approximate: (%, NonNegativeInteger) -> C if C has coerce: Symbol -> C and C has ^: (C, NonNegativeInteger) -> C
- associates?: (%, %) -> Boolean if C has IntegralDomain
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- center: % -> C
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if C has CharacteristicNonZero
- coefficient: (%, NonNegativeInteger) -> C
from AbelianMonoidRing(C, NonNegativeInteger)
- coefficients: % -> Stream C
- coerce: % -> % if C has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: % -> UnivariateTaylorSeries(C, QUOTE q, Sel(C, Zero))
coerce(x)
interpretsx
as a univariate Taylor series in the variableq
about the center 0.- coerce: C -> % if C has CommutativeRing
from Algebra C
- coerce: Fraction Integer -> % if C has Algebra Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: UnivariateTaylorSeries(C, QUOTE q, Sel(C, Zero)) -> %
coerce(x)
interpret a univariate Taylor series inq
with a center at 0 as an element of this domain. No check is made.
- commutator: (%, %) -> %
from NonAssociativeRng
- complete: % -> %
from PowerSeriesCategory(C, NonNegativeInteger, SingletonAsOrderedSet)
- construct: List Record(k: NonNegativeInteger, c: C) -> %
from IndexedProductCategory(C, NonNegativeInteger)
- constructOrdered: List Record(k: NonNegativeInteger, c: C) -> %
from IndexedProductCategory(C, NonNegativeInteger)
- D: % -> % if C has *: (NonNegativeInteger, C) -> C
from DifferentialRing
- D: (%, List Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- D: (%, List Symbol, List NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- D: (%, NonNegativeInteger) -> % if C has *: (NonNegativeInteger, C) -> C
from DifferentialRing
- D: (%, Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- D: (%, Symbol, NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- degree: % -> NonNegativeInteger
from PowerSeriesCategory(C, NonNegativeInteger, SingletonAsOrderedSet)
- differentiate: % -> % if C has *: (NonNegativeInteger, C) -> C
from DifferentialRing
- differentiate: (%, List Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- differentiate: (%, NonNegativeInteger) -> % if C has *: (NonNegativeInteger, C) -> C
from DifferentialRing
- differentiate: (%, Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- differentiate: (%, Symbol, NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
- elt: (%, %) -> %
from Eltable(%, %)
- elt: (%, NonNegativeInteger) -> C
- eval: (%, C) -> Stream C if C has ^: (C, NonNegativeInteger) -> C
- exquo: (%, %) -> Union(%, failed) if C has IntegralDomain
from EntireRing
- extend: (%, NonNegativeInteger) -> %
- hash: % -> SingleInteger
from SetCategory
- hashUpdate!: (HashState, %) -> HashState
from SetCategory
- integrate: % -> % if C has Algebra Fraction Integer
from UnivariateSeriesWithRationalExponents(C, NonNegativeInteger)
- integrate: (%, Symbol) -> % if C has variables: C -> List Symbol and C has Algebra Fraction Integer and C has integrate: (C, Symbol) -> C
from UnivariateSeriesWithRationalExponents(C, NonNegativeInteger)
- latex: % -> String
from SetCategory
- leadingCoefficient: % -> C
from PowerSeriesCategory(C, NonNegativeInteger, SingletonAsOrderedSet)
- leadingMonomial: % -> %
from PowerSeriesCategory(C, NonNegativeInteger, SingletonAsOrderedSet)
- leadingTerm: % -> Record(k: NonNegativeInteger, c: C)
from IndexedProductCategory(C, NonNegativeInteger)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (C -> C, %) -> %
from IndexedProductCategory(C, NonNegativeInteger)
- monomial?: % -> Boolean
from IndexedProductCategory(C, NonNegativeInteger)
- monomial: (C, NonNegativeInteger) -> %
from IndexedProductCategory(C, NonNegativeInteger)
- multiplyCoefficients: (Integer -> C, %) -> %
- multiplyExponents: (%, PositiveInteger) -> %
- multisect: (Integer, Integer, %) -> %
multisect(a,
b
,x
} selects the coefficients ofq^
((a+b)*n+a) and changes this monomial toq^n
.
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> NonNegativeInteger
- order: (%, NonNegativeInteger) -> NonNegativeInteger
- pole?: % -> Boolean
from PowerSeriesCategory(C, NonNegativeInteger, SingletonAsOrderedSet)
- polynomial: (%, NonNegativeInteger) -> Polynomial C
- polynomial: (%, NonNegativeInteger, NonNegativeInteger) -> Polynomial C
- quoByVar: % -> %
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reductum: % -> %
from IndexedProductCategory(C, NonNegativeInteger)
- revert: % -> %
revert(f(x))
returns a Taylor seriesg
(x
) such thatf
(g
(x
)) =g
(f
(x
)) =x
. Seriesf
(x
) should have constant coefficient 0 and invertible 1st order coefficient.
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- series: Stream C -> %
- series: Stream Record(k: NonNegativeInteger, c: C) -> %
- sqrt: % -> % if C has Algebra Fraction Integer
from RadicalCategory
- subtractIfCan: (%, %) -> Union(%, failed)
- terms: % -> Stream Record(k: NonNegativeInteger, c: C)
- truncate: (%, NonNegativeInteger) -> %
- truncate: (%, NonNegativeInteger, NonNegativeInteger) -> %
- unit?: % -> Boolean if C has IntegralDomain
from EntireRing
- unitCanonical: % -> % if C has IntegralDomain
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if C has IntegralDomain
from EntireRing
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(C, NonNegativeInteger)
Algebra % if C has CommutativeRing
Algebra C if C has CommutativeRing
Algebra Fraction Integer if C has Algebra Fraction Integer
ArcHyperbolicFunctionCategory if C has Algebra Fraction Integer
ArcTrigonometricFunctionCategory if C has Algebra Fraction Integer
BiModule(%, %)
BiModule(C, C)
BiModule(Fraction Integer, Fraction Integer) if C has Algebra Fraction Integer
CharacteristicNonZero if C has CharacteristicNonZero
CharacteristicZero if C has CharacteristicZero
CommutativeRing if C has CommutativeRing
CommutativeStar if C has CommutativeRing
DifferentialRing if C has *: (NonNegativeInteger, C) -> C
ElementaryFunctionCategory if C has Algebra Fraction Integer
Eltable(%, %)
EntireRing if C has IntegralDomain
HyperbolicFunctionCategory if C has Algebra Fraction Integer
IndexedProductCategory(C, NonNegativeInteger)
IntegralDomain if C has IntegralDomain
LeftModule Fraction Integer if C has Algebra Fraction Integer
Module % if C has CommutativeRing
Module C if C has CommutativeRing
Module Fraction Integer if C has Algebra Fraction Integer
noZeroDivisors if C has IntegralDomain
PartialDifferentialRing Symbol if C has PartialDifferentialRing Symbol and C has *: (NonNegativeInteger, C) -> C
PowerSeriesCategory(C, NonNegativeInteger, SingletonAsOrderedSet)
RadicalCategory if C has Algebra Fraction Integer
RightModule Fraction Integer if C has Algebra Fraction Integer
TranscendentalFunctionCategory if C has Algebra Fraction Integer
TrigonometricFunctionCategory if C has Algebra Fraction Integer
TwoSidedRecip if C has CommutativeRing
UnivariatePowerSeriesCategory(C, NonNegativeInteger)
UnivariateSeriesWithRationalExponents(C, NonNegativeInteger)