QEtaReductionCategory(C, F, AB)¶
qetasamba.spad line 396 [edit on github]
F: QEtaGradedAlgebra C
AB: Type
QEtaReductionCategory lists the functions used in the restricted reduction as described in “Dancing Samba with Ramanujan Partition Congruences” (Journal of Symbolic Computation). doi:10
.1016/j.jsc
.2017.02.001 http://www.risc.jku.at/publications/download/risc_5338/DancingSambaRamanujan.pdf
- noTrace: F -> Void
from QEtaComputationReductionCategory(F, AB)
- noTraceEnter: (F, AB) -> Void
from QEtaComputationReductionCategory(F, AB)
- reduce: (F, AB) -> F
from QEtaComputationReductionCategory(F, AB)
- reducer: (F, AB) -> Union(F, failed)
reducer(u, ab)
returns an elementb
from basis(ab) orb=1
such that gradeu
- gradeb
is divisible by grade(multiplier ab) or returns “failed” if no suchb
exists. This functions corresponds to the function “select_{t
,basis}(u
)” as in Definition 2.6 of cite{Hemmecke_DancingSambaRamanujan_2018
}. That reducer yields the element with biggest possible grade is ensured by the requirement that “basis” is appropriately sorted by greaterGrade?.
- tailReduce: (F, AB) -> F
tailReduce
==
tracedTailReduce(noTraceEnter
,noTrace
,noTrace
)
- tailReducible?: (F, Integer, F) -> Boolean
tailReducible?(u, n, b)
returnstrue
iff there existsf
inF
such that forv
=u
-f*b
,c
= qetaCoefficient(u
,n
), andd
= qetaCoefficient(v
,n
) zero?d
holds or euclideanSizec
> euclideanSized
. Initially it is assumed that not zero?(c
).
- topReduce: (F, AB) -> F
topReduce
==
tracedTopReduce(noTraceEnter
,noTrace
,noTrace
)
- topReducible?: (F, F, F) -> Boolean
from QEtaComputationReductionCategory(F, AB)
- tracedReduce: ((F, AB) -> Void, F -> Void, F -> Void) -> (F, AB) -> F
from QEtaComputationReductionCategory(F, AB)
- tracedTailReduce: ((F, AB) -> Void, F -> Void, F -> Void) -> (F, AB) -> F
tracedTailReduce behaves
performs only tail-reductions, i.e. the qetaGrade of the result will be the same as the qetaGrade of the input element. Tail-reductions are reductions that are performed on the non-leading terms of the input up to (and including) the constant term of the series.
- tracedTopReduce: ((F, AB) -> Void, F -> Void, F -> Void) -> (F, AB) -> F
tracedTopReduce behaves
like tracedReduce, but performing only top-reductions.
- traceEnter: NonNegativeInteger -> (F, AB) -> Void
from QEtaComputationReductionCategory(F, AB)
- traceLoop: NonNegativeInteger -> F -> Void
from QEtaComputationReductionCategory(F, AB)
- traceReturn: NonNegativeInteger -> F -> Void
from QEtaComputationReductionCategory(F, AB)