SymbolicEtaQuotientGammaΒΆ
qetasymb.spad line 544 [edit on github]
SymbolicEtaQuotientGamma holds data to compute an eta quotient expansion of $p_
{r
,m
,k
}(gamma tau)$. See eqref{eq:p_r-m
-k
(gamma*tau)}.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- definingSpecification: % -> QEtaSpecification
If x=etaQuotient(
spec
,m
,k
,gamma), then definingSpecification(x
) returns purify(spec
).
- elt: (%, NonNegativeInteger) -> SymbolicEtaQuotientLambdaGamma
x
.lambda returns the data corresponding to the respective lambda.
- etaQuotient: (QEtaSpecification, Matrix Integer) -> %
etaQuotient(rspec,gamma)
returns etaQuotient(rspec
,1,0,gamma
).
- etaQuotient: (QEtaSpecification, PositiveInteger, NonNegativeInteger, Matrix Integer) -> %
etaQuotient(rspec,m,k,gamma)
represents the expansion of $p_
{r
,m
,k
}(gamma tau)$ where $r
$ is given byrspec
.
- hash: % -> SingleInteger
from Hashable
- hashUpdate!: (HashState, %) -> HashState
from Hashable
- latex: % -> String
from SetCategory
- minimalRootOfUnity: % -> PositiveInteger
minimalRootOfUnity(x)
returns the smallest positive integern
such that the expansion of the function $p_
{r
,m
,k
}(gamma tau)$ corresponding to x=etaQuotient(spec,m
,k
,gamma) (neglecting the (c*
tau+d) factor) lives inQ
[w
][[z
]] wherew
is ann
-th root of unity andz
a fractionalq
power. See eqref{p_r
-m
-k
(gamma*tau)}.
- multiplier: % -> PositiveInteger
If x=etaQuotient(
spec
,m
,k
,gamma), then multiplier(x
) returnsm
.
- offset: % -> NonNegativeInteger
If x=etaQuotient(
spec
,m
,k
,gamma), then offset(x
) returnsk
. offset(x
) returns the subsequence offset.
- one?: % -> Boolean
one?(x)
returnstrue
if the eta-quotient corresponding tox
represents 1. This is the case if one?(definingSpecification(x
)), i.e. if the representation is trivial.
- qExponentMin: % -> Fraction Integer
qExponentMin(x)
returns the order of theq
-expansion in terms of the originalq
. Note that this exponent is only a lower bound for theq
-expansion. The coefficient corresponding to thisq
-power may be zero. See eqref{p_r
-m
-k
(gamma*tau)}. It corresponds to $p
(gamma)$ as defined in equation (51) of cite{Radu_AlgorithmicApproachRamanujanCongruences_2009
}.
- transformationMatrix: % -> Matrix Integer
If x=etaQuotient(spec,
m
,k
,gamma), then transformationMatrix(x
) returns gamma.