SymbolicEtaQuotientLambdaGammaΒΆ
qetasymb.spad line 376 [edit on github]
SymbolicEtaQuotientLambdaGamma holds data to compute an eta quotient expansion of $g_
{r
,m
,lambda}(gamma tau)$. See eqref{eq:g_r-m
-lambda(gamma*tau)}.
- cdExponent: % -> Fraction Integer
cdExponent(x)
returns the sum over all rd*cdExponent(f
) wheref
runs over all parts of definingSpecification(x
) and rd is the corresponding exponent of the eta-function specification, i.e. it returns eqref{eq:g_r-m
-lambda(gamma*tau)-cdExponent}
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- definingSpecification: % -> QEtaSpecification
If x=etaQuotient(rspec,
m
,lambda,gamma)), then definingSpecification(x
) returns purify(rspec).
- elt: (%, List Integer) -> SymbolicEtaGamma
elt(x, [delta.g])
returns the data corresponding to the respective (delta,g
) pair. Note that the pure eta-functions are indexed via (delta,-1
).
- etaQuotient: (QEtaSpecification, PositiveInteger, NonNegativeInteger, Matrix Integer) -> %
etaQuotient(rspec,m,lambda,gamma)
represents the expansion of $g_
{r
,m
,lambda}(gamma tau)$ in terms of $q=
exp(2i pi tau)$ and gamma=matrix[[a,b
],[c
,d
]] represents the cusp a/c. $r
$ is given byrspec
.
- hash: % -> SingleInteger
from Hashable
- hashUpdate!: (HashState, %) -> HashState
from Hashable
- lambda: % -> NonNegativeInteger
If x=etaQuotient(rspec,
m
,lambda,gamma)), then lambda(x
) returns lambda.
- latex: % -> String
from SetCategory
- minimalRootOfUnity: % -> PositiveInteger
minimalRootOfUnity(x)
returns the smallest positive integern
such that the expansion of the function $g_
{r
,m
,lambda}(gamma tau)$ corresponding to x=etaQuotient(rspec,m
,lambda,gamma) (neglecting the (c*
tau+d) factor) lives inQ
[w
][[z
]] wherew
is ann
-th root of unity andz
a fractionalq
power.
- minimalRootOfUnityWithoutUnityExponent: % -> PositiveInteger
minimalRootOfUnity(
x
) returns the smallest positive integern
such that the expansion of the function $g_
{r
,m
,lambda}(gamma tau)$ corresponding to x=etaQuotient(rspec,m
,lambda,gamma) (neglecting the (c*
tau+d) factor and the denominator $v_
{m
,lambda,gamma}$, i.e. unityExponent(x
)) lives inQ
[w
][[z
]] wherew
is ann
-th root of unity andz
a fractionalq
power.
- multiplier: % -> PositiveInteger
If x=etaQuotient(rspec,
m
,lambda,gamma)), then multiplier(x
) returns them
.
- qExponent: % -> Fraction Integer
qExponent(e)
returns the order of the expansion ofe
in $q=
exp(2i pi tau)$ while neglecting the (c*
tau+d) factor. It corresponds to the exponent of the fourth product of eqref{eq:g_r-m
-lambda(gamma*tau)}, i.e. it returns eqref{eq:g_r-m
-lambda(gamma*tau)-qExponent}.
- rationalPrefactor: % -> Fraction Integer
If x=etaQuotient(rspec,
m
,lambda,gamma)), then rationalPrefactor(x
) returns the square of the third product in eqref{eq:g_r-m
-lambda(gamma*tau)}, see eqref{eq:g_r-m
-lambda(gamma*tau)-rationalPrefactor}. That is the product of rationalPrefactor(y
[d
,-1
])^e for [d
,-1
,e
] in pureParts(rspec).
- transformationMatrix: % -> Matrix Integer
If x=etaQuotient(rspec,
m
,lambda,gamma)), then transformationMatrix(x
) returns gamma.
- unityExponent: % -> Fraction Integer
If x=etaQuotient(rspec,
m
,lambda,gamma)), then unityExponent(x
) returns the second product in eqref{eq:g_r-m
-lambda(gamma*tau)}, i.e. it returns eqref{eq:g_r-m
-lambda(gamma*tau)-unityExponent}. That is the fractionalPart of the sum of unityExponent(y
[d
,g
])*e for [d
,g
,e
] in parts(rspec).