SymbolicModularEtaQuotient QMODΒΆ
qetasymbmod.spad line 256 [edit on github]
QMOD: QEtaModularCategory
SymbolicModularEtaQuotient(QMOD) holds data to compute an eta-quotient expansions of $F_
{bar{s
}, bar{r
}, m
, t
}(gammatau)$ as several cusps. See eqref{eq:F_sbar-rbar-m
-t
(gamma*tau)}.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- constant?: % -> Boolean
constant?(x)
returnstrue
if ordersMin(x
) returns a list of entries that are properly bigger than-1
. Note that ordersMin(x
) gives an upper bound of the order for each cusp. Sincex
represents a modular function, with only poles at the cusps, it means that the function must be constant. Since we rely on estimates,x
can represent a constant even if constant?(x
) isfalse
. If, however, multiplier(x
)=1
thenx
represents simply an eta-quotient and ordersMin(x
) gives the exact orders.
- cusps: % -> List Cusp
cusps(x)
either returns the value that was given to etaQuotient at creation time or cusps(nn
)$QMOD if the cusps where not given wherenn
is the level given through the cofactor ofx
.
- elt: (%, Cusp) -> SymbolicModularEtaQuotientGamma QMOD
x
.cusp returns the data corresponding to the respective cusp.
- etaQuotient: (QEtaSpecification, List Cusp) -> %
etaQuotient(rspec,cusps)
represents the expansion of $g_
{rbar}(gamma tau)$ for all gamma corresponding to the givencusps
of QMOD. $rbar$ is given byrspec
.
- etaQuotient: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> %
etaQuotient(sspec,rspec,m,t)
represents the expansion of $F_
{rbar,sbar,m
,t
}(gamma tau)$ for all gamma corresponding to the cusps of QMOD. $rbar$ and $sbar$ are given byrspec
andsspec
, respectively.
- etaQuotient: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger, List Cusp) -> %
etaQuotient(sspec,rspec,m,t,spitzen)
represents the expansion of $F_
{sbar,rbar,m
,t
}(gamma tau)$ for all gamma corresponding to the given cusps of QMOD. $rbar$ and $sbar$ are given byrspec
andsspec
, repectively.
- etaQuotient: QEtaSpecification -> %
etaQuotient(rspec)
represents the expansion of $g_
{rbar}(gamma tau)$ for all gamma corresponding to the cusps of QMOD. $rbar$ is given byrspec
.
- hash: % -> SingleInteger
from SetCategory
- hashUpdate!: (HashState, %) -> HashState
from SetCategory
- latex: % -> String
from SetCategory
- minimalRootOfUnity: % -> PositiveInteger
minimalRootOfUnity(x)
returnslcm
[minimalRootOfUnity(x
.u
) foru
in cuspsx
].
- one?: % -> Boolean
one?(x)
returnstrue
if the eta-quotient corresponding tox
represents 1. This is the case if one?(basefactor(x
.c
)) and one?(cofactor(x
.c
)) for one of the cusps of cusps(x
).
- ordersMin: % -> List Fraction Integer
ordersMin(x)
returns an estimate for the order at all cusps (in the canonical variable) without computing the explicit series expansion at any cusp. Note that due to estimation it does not necessarily return an integer, but a rational number. The result is [orderMin(x
.c
) forc
in cuspsx
].