SymbolicModularEtaQuotient QMOD¶
qetasymbmod.spad line 295 [edit on github]
QMOD: QEtaModularCategory
SymbolicModularEtaQuotient(QMOD) holds data to compute an eta-quotient expansions of $F_
{s
,r
,m
,t
}(gamma tau)$ at several transformation matrices. See eqref{eq:F_s-r
-m
-t
(gamma*tau)}.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- constant?: % -> Boolean
constant?(x)
returnstrue
if ordersMin(x
) returns a list of entries that are all properly bigger than-1
. Note that ordersMin(x
) gives an upper bound of the order for each transformation matrix. Ifx
represents a modular function, with only poles at the (stored) transformation matrices ofx
, it means that the function must be constant. Since we rely on estimates,x
can represent a constant even if constant?(x
) isfalse
. If, however, multiplier(x
)=1
thenx
represents simply an eta-quotient and ordersMin(x
) gives the exact orders.
- coSpecification: % -> QEtaSpecification
If x=etaQuotient(sspec,rspec,…) coSpecification(
x
) returns sspec. If the definition ofx
did not involve any cofactor, then coSpecification(x
) returns etaQuotientSpecification(level(definingSpecification(x
)),[]).
- definingSpecification: % -> QEtaSpecification
If x=etaQuotient(sspec,rspec,…) or x=etaQuotient(rspec,spitzen) or x=etaQuotient(rspec), then definingSpecification(
x
) returns rspec.
- elt: (%, Matrix Integer) -> SymbolicModularEtaQuotientGamma QMOD
x
.gamma returns the data corresponding to the respective transformation matrix.
- etaQuotient: (QEtaSpecification, List Cusp) -> %
etaQuotient(rspec,gammas)
for nn:=level(rspec
) and gammas:=[cuspToMatrix(nn
,c
)$QMOD forc
in spitzen].
- etaQuotient: (QEtaSpecification, List Matrix Integer) -> %
etaQuotient(rspec,gammas)
represents the expansion of $g_r
(gamma tau)$ for all gamma ingammas
. $r
$ is given byrspec
.
- etaQuotient: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> %
etaQuotient(sspec,rspec,m,t)
represents the expansion of $F_
{r
,s
,m
,t
}(gamma tau)$ for all gamma corresponding to the cusps of QMOD. $r
$ and $s
$ are given byrspec
andsspec
, respectively.
- etaQuotient: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger, List Cusp) -> %
etaQuotient(sspec,rspec,m,t,spitzen)
computes etaQuotient(sspec
,rspec
,m
,t
,gammas) for nn:=level(sspec
) and gammas:=[cuspToMatrix(nn
,c
)$QMOD forc
inspitzen
].
- etaQuotient: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger, List Matrix Integer) -> %
etaQuotient(sspec,rspec,m,t,gammas)
represents the expansion of $F_
{s
,r
,m
,t
}(gamma tau)$ for all gamma ingammas
. $r
$ and $s
$ are given byrspec
andsspec
, repectively.
- etaQuotient: QEtaSpecification -> %
etaQuotient(rspec)
represents the expansion of $g_r
(gamma tau)$ for all gamma corresponding to the cusps of QMOD. $r
$ is given byrspec
.
- hash: % -> SingleInteger
from Hashable
- hashUpdate!: (HashState, %) -> HashState
from Hashable
- latex: % -> String
from SetCategory
- level: % -> PositiveInteger
level(y)
returns level(coSpecification(y
)).
- minimalRootOfUnity: % -> PositiveInteger
minimalRootOfUnity(x)
returnslcm
[minimalRootOfUnity(x
.u
) foru
in transformationMatricesx
].
- multiplier: % -> PositiveInteger
If x=etaQuotient(
sspec
,rspec
,m
,k
,…), then multiplier(x
) returnsm
. If x=etaQuotient(rspec
,…), then multiplier(x
)=1
.
- offset: % -> NonNegativeInteger
If x=etaQuotient(
sspec
,rspec
,m
,k
,…), then offset(x
) returnsk
. If x=etaQuotient(rspec
,…), then offset(x
)=0
.
- one?: % -> Boolean
one?(x)
returnstrue
if the eta-quotient corresponding tox
represents 1. This is the case if one?(basefactor(x
.trf
)) and one?(cofactor(x
.trf
)) for one elementtrf
of transformationMatrices(x
).
- orders: % -> List Integer
orders(x)
returns the order at all transformation matrices (in the canonical variable) without computing the explicit series expansion at any matrix. It returns an error, if for one matrixtrf
in transformationMatrices(x
) the input condition multiplier(basefactor(x
.trf
))=1
is not met. The result is [order(x
.trf
) fortrf
in transformationMatricesx
].
- ordersMin: % -> List Fraction Integer
ordersMin(x)
returns an estimate for the order at all transformation matrices (in the canonical variable) without computing the explicit series expansion at any matrix. Note that due to estimation it does not necessarily return an integer, but a rational number. The result is [orderMin(x
.trf
) fortrf
in transformationMatricesx
].