SymbolicModularEtaQuotient QMOD¶
qetasymbmod.spad line 295 [edit on github]
QMOD: QEtaModularCategory
SymbolicModularEtaQuotient(QMOD) holds data to compute an eta-quotient expansions of $F_{s,r,m,t}(gamma tau)$ at several transformation matrices. See eqref{eq:F_s-r-m-t(gamma*tau)}.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- constant?: % -> Boolean
constant?(x)returnstrueif ordersMin(x) returns a list of entries that are all properly bigger than-1. Note that ordersMin(x) gives an upper bound of the order for each transformation matrix. Ifxrepresents a modular function, with only poles at the (stored) transformation matrices ofx, it means that the function must be constant. Since we rely on estimates,xcan represent a constant even if constant?(x) isfalse. If, however, multiplier(x)=1thenxrepresents simply an eta-quotient and ordersMin(x) gives the exact orders.
- coSpecification: % -> QEtaSpecification
If x=etaQuotient(sspec,rspec,…) coSpecification(
x) returns sspec. If the definition ofxdid not involve any cofactor, then coSpecification(x) returns etaQuotientSpecification(level(definingSpecification(x)),[]).
- definingSpecification: % -> QEtaSpecification
If x=etaQuotient(sspec,rspec,…) or x=etaQuotient(rspec,spitzen) or x=etaQuotient(rspec), then definingSpecification(
x) returns rspec.
- elt: (%, Matrix Integer) -> SymbolicModularEtaQuotientGamma QMOD
x.gamma returns the data corresponding to the respective transformation matrix.
- etaQuotient: (QEtaSpecification, List Cusp) -> %
etaQuotient(rspec,gammas)for nn:=level(rspec) and gammas:=[cuspToMatrix(nn,c)$QMOD forcin spitzen].
- etaQuotient: (QEtaSpecification, List Matrix Integer) -> %
etaQuotient(rspec,gammas)represents the expansion of $g_r(gamma tau)$ for all gamma ingammas. $r$ is given byrspec.
- etaQuotient: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> %
etaQuotient(sspec,rspec,m,t)represents the expansion of $F_{r,s,m,t}(gamma tau)$ for all gamma corresponding to the cusps of QMOD. $r$ and $s$ are given byrspecandsspec, respectively.
- etaQuotient: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger, List Cusp) -> %
etaQuotient(sspec,rspec,m,t,spitzen)computes etaQuotient(sspec,rspec,m,t,gammas) for nn:=level(sspec) and gammas:=[cuspToMatrix(nn,c)$QMOD forcinspitzen].
- etaQuotient: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger, List Matrix Integer) -> %
etaQuotient(sspec,rspec,m,t,gammas)represents the expansion of $F_{s,r,m,t}(gamma tau)$ for all gamma ingammas. $r$ and $s$ are given byrspecandsspec, repectively.
- etaQuotient: QEtaSpecification -> %
etaQuotient(rspec)represents the expansion of $g_r(gamma tau)$ for all gamma corresponding to the cusps of QMOD. $r$ is given byrspec.
- hash: % -> SingleInteger
from Hashable
- hashUpdate!: (HashState, %) -> HashState
from Hashable
- latex: % -> String
from SetCategory
- level: % -> PositiveInteger
level(y)returns level(coSpecification(y)).
- minimalRootOfUnity: % -> PositiveInteger
minimalRootOfUnity(x)returnslcm[minimalRootOfUnity(x.u) foruin transformationMatricesx].
- multiplier: % -> PositiveInteger
If x=etaQuotient(
sspec,rspec,m,k,…), then multiplier(x) returnsm. If x=etaQuotient(rspec,…), then multiplier(x)=1.
- offset: % -> NonNegativeInteger
If x=etaQuotient(
sspec,rspec,m,k,…), then offset(x) returnsk. If x=etaQuotient(rspec,…), then offset(x)=0.
- one?: % -> Boolean
one?(x)returnstrueif the eta-quotient corresponding toxrepresents 1. This is the case if one?(basefactor(x.trf)) and one?(cofactor(x.trf)) for one elementtrfof transformationMatrices(x).
- orders: % -> List Integer
orders(x)returns the order at all transformation matrices (in the canonical variable) without computing the explicit series expansion at any matrix. It returns an error, if for one matrixtrfin transformationMatrices(x) the input condition multiplier(basefactor(x.trf))=1is not met. The result is [order(x.trf) fortrfin transformationMatricesx].
- ordersMin: % -> List Fraction Integer
ordersMin(x)returns an estimate for the order at all transformation matrices (in the canonical variable) without computing the explicit series expansion at any matrix. Note that due to estimation it does not necessarily return an integer, but a rational number. The result is [orderMin(x.trf) fortrfin transformationMatricesx].