SymbolicModularEtaQuotientGamma QMODΒΆ
qetasymbmod.spad line 130 [edit on github]
QMOD: QEtaModularCategory
SymbolicModularEtaQuotientGamma(QMOD) holds data to compute an eta-quotient expansions of $F_
{bar{s
}, bar{r
}, m
, t
}(gammatau)$. See eqref{eq:F_sbar-rbar-m
-t
(gamma*tau)}.
- basefactor: % -> List SymbolicEtaQuotientGamma
basefactor(x)
returns the part of $F_
{bar{s
},bar{r
},m
,t
}$ that is connected to the generating series of a(m*n+k) fork
in modularOrbit(rspec,m
,t
)$QMOD.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: SymbolicEtaQuotientGamma -> %
coerce(y)
turns an element of SymbolicEtaQuotientGamma into this domain.
- cofactor: % -> SymbolicEtaQuotientGamma
cofactor(x)
returns the cofactor part to make $F_
{bar{s
},bar{r
},m
,t
}$ a modular function for $Gamma_1(N
)$.
- etaQuotient: (QEtaSpecification, Matrix Integer) -> %
generalizedEtaQuotient(rspec, gamma) represents the expansion of $
g_
{bar{r
}}(gammatau)$ where bar{r
} is given through rspec.
- etaQuotient: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger, Matrix Integer) -> %
etaQuotient(sspec, rspec, m, t, gamma)
represents the expansion of $F_
{bar{s
},bar{r
},m
,t
}(gammatau)$ where bar{s
} and bar{r
} are given throughsspec
andrspec
.
- etaQuotient: QEtaSpecification -> %
etaQuotient(rspec)
represents the expansion of $g_
{bar{r
}}(tau)$ where bar{r
} is given throughrspec
. It is the same as generalizedEtaQuotient(rspec
,matrix[[1,0],[0,1]]).
- hash: % -> SingleInteger
from SetCategory
- hashUpdate!: (HashState, %) -> HashState
from SetCategory
- latex: % -> String
from SetCategory
- minimalRootOfUnity: % -> PositiveInteger
minimalRootOfUnity(x)
returns thelcm
of minimalRootOfUnity(cofactor(x
)) and minimalRootOfUnity(basefactor(x
)).
- one?: % -> Boolean
one?(x)
returnstrue
if the generalized eta-quotient corresponding tox
represents 1. This is the case if one?(basefactor(x
)) and one?(cofactor(x
)).
- orderMin: % -> Fraction Integer
orderMin0
(x
) returns the expected order of thex
-expansion in terms of x=q^(1/w) wherew
is the widths of the cusp ofG
corresponding to transformationMatrix(x
). Note that this is an lower bound of the pole order. The coefficient corresponding to this grade may be zero. Further note that due to estimation it does not necessarily return an integer, but a rational number. Only for cases where multiplier(basefactor(x
))=1
and one?(cofactor(x
), orderMin(x
) is equal to thetrue
order of the expansion.