SymbolicModularEtaQuotientGamma QMODΒΆ
qetasymbmod.spad line 132 [edit on github]
QMOD: QEtaModularCategory
SymbolicModularEtaQuotientGamma(QMOD) holds data to compute an eta-quotient expansions of $F_{s,r,m,t}(gamma tau)$ for a particular matrix $gammainSL2Z$.. See eqref{eq:F_s-r-m-t(gamma*tau)}.
- basefactor: % -> List SymbolicEtaQuotientGamma
basefactor(x)returns the part of $F_{s,r,m,t}(gamma tau)$ that is connected to the generating series of a(m*n+k) forkin modularOrbit(rspec,m,t) (from QMOD).
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: SymbolicEtaQuotientGamma -> %
coerce(y)turns an element of SymbolicEtaQuotientGamma into this domain.
- cofactor: % -> SymbolicEtaQuotientGamma
cofactor(x)returns the cofactor part to make $F_{s,r,m,t}$ a modular function for $Gamma_0(N)$ or $Gamma_1(N)$ (depending on the parameter QMOD.
- etaQuotient: (QEtaSpecification, Matrix Integer) -> %
generalizedEtaQuotient(rspec, gamma) represents the expansion of $
g_r(gamma tau)$ whereris given through rspec.
- etaQuotient: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger, Matrix Integer) -> %
etaQuotient(sspec, rspec, m, t, gamma)represents the expansion of $F_{s,r,m,t}(gamma tau)$ wheresandrare given throughsspecandrspec.
- etaQuotient: QEtaSpecification -> %
etaQuotient(rspec)represents the expansion of $g_r(tau)$ whereris given throughrspec. It is the same as generalizedEtaQuotient(rspec,matrix[[1,0],[0,1]]).
- hash: % -> SingleInteger
from Hashable
- hashUpdate!: (HashState, %) -> HashState
from Hashable
- latex: % -> String
from SetCategory
- minimalRootOfUnity: % -> PositiveInteger
minimalRootOfUnity(x)returns thelcmof minimalRootOfUnity(cofactor(x)) andlcm([minimalRootOfUnitybforbin basefactor(x)]).
- one?: % -> Boolean
one?(x)returnstrueif the generalized eta-quotient corresponding toxrepresents 1. This is the case if one?(first(basefactor(x))) and one?(cofactor(x)). If this function returnsfalse, then it is not guaranteed thatxdoes not represent the constant series 1; it might still be the case that basefactor(x) represents the inverse of cofactor(x).
- order: % -> Integer
order(x)returns the order of thez-expansion in terms of the z=q^(1/w) wherewis the width of the cusp of the group corresponding to QMOD that corresponds to transformationMatrix(x). If the input condition multiplier(first(basefactor(x)))=1is not met, the function aborts with an error.
- orderMin: % -> Fraction Integer
orderMin(x)returns the expected order of thez-expansion in terms of z=q^(1/w) wherewis the width of the cusp of the group corresponding to QMOD that corresponds to transformationMatrix(x). Note that this is a lower bound of the order. If u=ceiling(orderMin(x)) then even this integer is a lower bound of the order of the expansion ofzin terms of x=q^(1/w), since the coefficient corresponding to x^u may be zero. Further note that due to estimation it does not necessarily return an integer, but a rational number. Only for cases where multiplier(first(basefactor(x)))=1orderMin(x) is equal to thetrueorder of the expansion.
- qExponent: % -> Fraction Integer
qExponent(x)returns the order of theq-expansion in terms of the originalq. If the input condition multiplier(first(basefactor(x)))=1is not met, the function aborts with an error.
- qExponentMin: % -> Fraction Integer
qExponentMin(x)returns the order of theq-expansion in terms of the originalq. Note that this exponent is only a lower bound for theq-expansion. The coefficient corresponding to thisq-power may be zero. Only for cases where multiplier(first(basefactor(x)))=1qExponentMin(x) is equal to thetrueorder (inq) of the expansion.