SymbolicEtaGammaΒΆ
qetasymb.spad line 200 [edit on github]
SymbolicEtaGamma collects data for the expansion of eta_{delta,m
,lambda}(gammatau)$ and $eta_{delta,g
,m
,lambda}^{[R
]}(gammatau)$. See eqref{eq:eta_delta-m
-lambda(gamma*tau)} and eqref{eq:eta_delta-g
-m
-lambda^[R
](gamma*tau)}.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- delta: % -> PositiveInteger
If x=eta(delta,
g
,m
,lambda,gamma) then delta(x
) returns delta.
- eta: (PositiveInteger, Integer, PositiveInteger, NonNegativeInteger, Matrix Integer) -> %
eta(delta,g,m,lambda,gamma)
represents the meta-data for the expansion of $eta_{delta,g
,m
,lambda}^{[R
]}(gamma tau)$ in terms of $q=
exp(2ipitau)$. We require thatc>0
in gamma=matrix[[a,b
],[c
,d
]].
- gamma1: % -> Matrix Integer
If x=eta(delta,
g
,m
,lambda,gamma) thengamma1
(x
) returns the SL2Z part of splitMatrix(gamma,delta,m
,lambda).
- hash: % -> SingleInteger
from SetCategory
- hashUpdate!: (HashState, %) -> HashState
from SetCategory
- lambda: % -> NonNegativeInteger
If x=eta(delta,
g
,m
,lambda,gamma) then lambda(x
) returns lambda.
- latex: % -> String
from SetCategory
- multiplier: % -> PositiveInteger
If x=eta(delta,
g
,m
,lambda,gamma) then multiplier(x
) returnsm
.
- pure?: % -> Boolean
pure?(x)
returnstrue
ifx
corresponds to a pure eta function.
- qExponent: % -> Fraction Integer
qExponent(x)
returns the (fractional) exponent for the order of the expansion ofx
in the original variableq
, see eqref{eq:eta_delta-m
-lambda(gamma*tau)} and eqref{eq:eta_delta-g
-m
-lambda^[R
](gamma*tau)}.
- rationalPrefactor: % -> Fraction Integer
rationalPrefactor(x)
returns the square of the second product in eqref{eq:eta_delta-m
-lambda(gamma*tau)} if pure?(x
). See ref{thm:c*tau+d}. If not pure?(x
) then rationalPrefactor(x
)=1
.
- subindex: % -> Integer
If x=eta(delta,
g
,m
,lambda,gamma) then subindex(x
) returnsg
.
- transformationMatrix: % -> Matrix Integer
If x=eta(
delta
,g
,m
,lambda
,gamma) then transformationMatrix(x
) returns gamma.
- udelta: % -> Fraction Integer
Returns $u_{delta,
m
,lambda}$. See eqref{eq:eta_delta-m
-lambda(gamma*tau)}. See eqref{eq:uv_delta}
- unityExponent: % -> Fraction Integer
unityExponent(x)
returns the (fractional) exponent for the unity factor of the expansion ofx
, see eqref{eq:eta_delta-m
-lambda(gamma*tau)} and eqref{eq:eta_delta-g
-m
-lambda^[R
](gamma*tau)}.