EtaQuotientQSeriesInfinity C¶
qetaqseriesinf.spad line 105 [edit on github]
- C: Ring 
EtaQuotientQSeriesInfinity implements the (multiplicative) group of (generalized) eta-functions in their expansion at infinity. Elements can be represented as Laurent series in q with a prefactor of q^r where r is a rational number (and in case of eta-quotient (non-generalized) r has a denominator that is a divisor of 24). Note that this domain keeps the “fractional part” always separate from the “series part” even when the fractional part is an integer.
- 1: %
- from MagmaWithUnit 
- /: (%, %) -> % if C has IntegralDomain
- from Group 
- ^: (%, Integer) -> % if C has IntegralDomain
- from Group 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- commutator: (%, %) -> % if C has IntegralDomain
- from Group 
- conjugate: (%, %) -> % if C has IntegralDomain
- from Group 
- eta: PositiveInteger -> %
- eta(n)returns- q^(- n/24)*prod_{- k=1}^infty (1-- q^{- kn}).
- etaPower: (PositiveInteger, Integer) -> %
- etaPower(d, e)returns eta(- d)^e.
- etaQuotientInfinity: QEtaSpecification -> %
- etaQuotientInfinity(rspec)returns the product (generalized) eta-powers for each list- lin- rspec. See generalizedEtaPower for the format of the parameter- l.
- eulerExpansion: % -> QEtaLaurentSeries C
- eulerExpansion(x)returns the power series (with constant coefficient 1) that results from just considering the product of Euler function powers (- q-Pochhammer symbols) connected to the creation the (generalized) eta-quotient.
- eulerExponent: % -> Fraction Integer
- If - xis a (generalized) eta-quotient, then eulerExponent(- x) is the fractional exponent- eof- qsuch that q^e*eulerExpansion(- x) is equal to the Puiseux series expansion of- x.
- eulerFunctionPower: (PositiveInteger, Integer) -> QEtaLaurentSeries C
- eulerFunctionPower(n, e)computes (prod_{- k=1}^infty(1-- q^{- kn}))^e.
- expansion: % -> QEtaLaurentSeries C
- expansion(x)aborts with error if eulerExponent(- x) is not am integer. Otherwise it returns q^r*seriesPart(- x) where r=prefactor(- x) and- qis the variable of the series domain. It is the same as q^e*eulerExpansion(- x) where e=eulerExponent(- x).
- generalizedEtaPower: (PositiveInteger, PositiveInteger, Fraction Integer) -> %
- generalizedEtaPower(d,g,e)returns the generalized eta-quotient given by eqref{eq:generalized-eta-quotient} and formula (1.11) in cite{- ChenDuZhao_FindingModularFunctionsRamanujan_2019} raised to the power- e. generalizedEtaPower(- d,- g,- e) returns etaPower(- d, numer(2*e)), if- g=0; etaQuotient([- g,- d],[numer(2*e),-numer(2*e)]), if- g=d/2; and returns $eta_{- d,- g}(tau)^e$ if- eis an integer. Note that only for- g=0and- g=d/2the exponent- ecan be a half-integer. Otherwise, it must come with denominator- =1.
- inv: % -> % if C has IntegralDomain
- from Group 
- latex: % -> String
- from SetCategory 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- one?: % -> Boolean
- from MagmaWithUnit 
- polynomialToEta: Polynomial C -> %
- polynomialToEta(p)assumes that all variables are of the form- Eiwith the letter- Eand a positive number- i. In the polynomial- pthe powers Ei^ni will be replaced by eta(- i)^ni. If- lis the leading monomial- p, then it is assumed that prefactor(toEta(- l))=prefactor(polynomialToEta(- m)) for every monomial- mof- p.
- prefactor: % -> Fraction Integer
- prefactor(x)returns the fractional part of the fractional- q-power prefactor of- xwhere- qis the variable of- L. The returned value is in the range 0<=prefactor(- x)- <1, because integer powers of- qare moved to the series part.
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from MagmaWithUnit 
- seriesPart: % -> QEtaLaurentSeries C
- seriesPart(x)returns the Laurent series part of- x.- x= q^r*seriesPart(- x) where r=prefactor(- x).
Group if C has IntegralDomain
TwoSidedRecip if C has IntegralDomain
unitsKnown if C has IntegralDomain