ModularEtaQuotientQSeriesTools(C, xiord, CX, xi, QMOD, trfs)ΒΆ
qetamodeqqseriestool.spad line 132 [edit on github]
xiord: PositiveInteger
CX: Join(CommutativeRing, Algebra C)
xi: CX
QMOD: QEtaModularCategory
ModularEtaQuotientQSeriesTools computes an eta quotient expansion of $g_{r,m,lambda}(gamma tau)$, $p_{r,m,t}(gammatau)$, $F_{s,r,m,t}(gammatau)$. See eqref{eq:g_r-m-lambda(gamma*tau)} and eqref{eq:F_s-r-m-t(gamma*tau)}.
- coerce: QEtaSpecificationRing C -> ModularFunctionQSeries(CX, trfs)
coerce(x)effectively replaces each specification in the term ofxby the respective expansion at all the cusps.
- modularEtaQuotient: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> ModularFunctionQSeries(CX, trfs)
modularEtaQuotient(sspec, rspec, m, t)returns the series expansion of etaQuotient(sspec,rspec,m,t)$SymbolicModularEtaQuotientGamma(QMOD) at the respective cusps.
- modularEtaQuotient: QEtaSpecification -> ModularFunctionQSeries(CX, trfs)
modularEtaQuotient(rspec)checks whetherrspecspecifices modular eta-quotientwrt. QMOD and returns the Laurent expansion at the respective cusps. Due to Theorem 1 (Gordon, Hughes, Newman) in https://doi.org/10.1515/crll.1996.472.1 we must only require that the weight of the modular eta-quotient is an integer and the other modular conditions are fulfilled, i.e. we only check that weakModular?(rspec) istrueinstead of modular?(rspec).