ModularEtaQuotientQSeriesInfinityTools(C, QMOD)ΒΆ
qetamodeqqseriesinftool.spad line 76 [edit on github]
C: Ring
QMOD: QEtaModularCategory
undocumented
- coerce: EtaQuotientQSeriesInfinity C -> ModularFunctionQSeriesInfinity C if C has CommutativeRing
coerce(x)assumes that eqi is the representation of a modular eta-quotient with a cusp only at infinity and expands it into a Laurent series.
- coerce: EtaQuotientQSeriesInfinity C -> QEtaLaurentSeries C
coerce(eqi)assumes thateqiis the representation of an eta-quotient and expands it into a Laurent series.
- laurentExpansionInfinity: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> QEtaLaurentSeries C
laurentExpansionInfinity(sspec,rspec,m,t)computes the $q$-series Laurent expansion corresponding to the disection of the eta-quotient given byrspec, with parameters (m,t) and multiplied by the etaquotient given bysspec. It corresponds toF_{s,r,m,t}(tau) as given through Equation eqref{eq:Ramanuja-Kolberg-Identity}.
- laurentExpansionInfinity: QEtaSpecification -> QEtaLaurentSeries C
laurentExpansionInfinity(spec)computes the $q$-series Laurent expansion of the eta-quotient given byspec.
- modularEtaQuotientInfinity: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> ModularFunctionQSeriesInfinity C if C has CommutativeRing
modularEtaQuotientInfinity(sspec, rspec, m, t)returns the series expansion of etaQuotient(sspec,rspec,m,t)$SymbolicModularEtaQuotientGamma(QMOD) at the cusp infinity without using SymbolicModularEtaQuotientGamma.
- modularEtaQuotientInfinity: QEtaSpecification -> ModularFunctionQSeriesInfinity C if C has CommutativeRing
modularEtaQuotientInfinity(rspec)checks whetherrspecspecifices modular eta-quotientwrt. QMOD and returns (expansion(etaQuotient(rspec)$EQI(C))$EQI(C))::A1(C).