ModularFunctionQSeriesInfinity CΒΆ
qetamodfunqseriesinf.spad line 98 [edit on github]
ModularFunctionQSeriesInfinity represents Laurent series such that if x is such a series and order(x)>0 then x=0. Quotients of Dedekind eta-functions that are modular functions that only have a pole (if any) at infinity, can be represented as such series.
- 0: %
- from QEtaAlgebra C 
- 1: %
- from QEtaAlgebra C 
- *: (%, %) -> %
- from QEtaAlgebra C 
- *: (%, C) -> %
- from RightModule C 
- *: (%, Fraction Integer) -> % if C has Algebra Fraction Integer
- from RightModule Fraction Integer 
- *: (C, %) -> %
- from QEtaAlgebra C 
- *: (Fraction Integer, %) -> % if C has Algebra Fraction Integer
- from LeftModule Fraction Integer 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from QEtaAlgebra C 
- -: % -> %
- from QEtaAlgebra C 
- -: (%, %) -> %
- from QEtaAlgebra C 
- /: (%, %) -> % if C has Field
- from Field 
- /: (%, C) -> % if C has Field
- from AbelianMonoidRing(C, Integer) 
- ^: (%, %) -> % if C has Algebra Fraction Integer
- ^: (%, Fraction Integer) -> % if C has Algebra Fraction Integer
- from RadicalCategory 
- ^: (%, Integer) -> % if C has Field
- from DivisionRing 
- ^: (%, NonNegativeInteger) -> %
- from QEtaAlgebra C 
- ^: (%, PositiveInteger) -> %
- from Magma 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- approximate: (%, Integer) -> C if C has ^: (C, Integer) -> C and C has coerce: Symbol -> C
- from UnivariatePowerSeriesCategory(C, Integer) 
- associates?: (%, %) -> Boolean if C has IntegralDomain
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- center: % -> C
- from UnivariatePowerSeriesCategory(C, Integer) 
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- charthRoot: % -> Union(%, failed) if C has CharacteristicNonZero
- choose: (PositiveInteger, NonNegativeInteger, %) -> %
- from QEtaLaurentSeriesCategory C 
- coefficient: (%, Integer) -> C
- from AbelianMonoidRing(C, Integer) 
- coerce: % -> %
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: % -> QEtaLaurentSeries C
- coerce(x)returns the element- xas a QEta Laurent series.
- coerce: C -> %
- from Algebra C 
- coerce: Fraction Integer -> % if C has Algebra Fraction Integer
- coerce: Integer -> %
- from NonAssociativeRing 
- coerce: QEtaLaurentSeries C -> %
- coerce(x)assumes that the QEta Laurent series- xbelongs to the subalgebra of series with the properties of this damain. No check is made.
- coerce: QEtaTaylorSeries C -> %
- from CoercibleFrom QEtaTaylorSeries C 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- complete: % -> %
- from PowerSeriesCategory(C, Integer, SingletonAsOrderedSet) 
- construct: List Record(k: Integer, c: C) -> %
- from IndexedProductCategory(C, Integer) 
- constructOrdered: List Record(k: Integer, c: C) -> %
- from IndexedProductCategory(C, Integer) 
- D: % -> % if C has *: (Integer, C) -> C
- from DifferentialRing 
- D: (%, List Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- D: (%, List Symbol, List NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- D: (%, NonNegativeInteger) -> % if C has *: (Integer, C) -> C
- from DifferentialRing 
- D: (%, Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- D: (%, Symbol, NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- degree: % -> Integer
- from PowerSeriesCategory(C, Integer, SingletonAsOrderedSet) 
- differentiate: % -> % if C has *: (Integer, C) -> C
- from DifferentialRing 
- differentiate: (%, List Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- differentiate: (%, NonNegativeInteger) -> % if C has *: (Integer, C) -> C
- from DifferentialRing 
- differentiate: (%, Symbol) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- differentiate: (%, Symbol, NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
- divide: (%, %) -> Record(quotient: %, remainder: %) if C has Field
- from EuclideanDomain 
- elt: (%, %) -> %
- from Eltable(%, %) 
- elt: (%, Integer) -> C
- from UnivariatePowerSeriesCategory(C, Integer) 
- euclideanSize: % -> NonNegativeInteger if C has Field
- from EuclideanDomain 
- eval: (%, C) -> Stream C if C has ^: (C, Integer) -> C
- from UnivariatePowerSeriesCategory(C, Integer) 
- exponentGcd: (%, PositiveInteger) -> Integer
- from QEtaLaurentSeriesCategory C 
- expressIdealMember: (List %, %) -> Union(List %, failed) if C has Field
- from PrincipalIdealDomain 
- exquo: (%, %) -> Union(%, failed) if C has IntegralDomain
- from EntireRing 
- extend: (%, Integer) -> %
- from UnivariatePowerSeriesCategory(C, Integer) 
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if C has Field
- from EuclideanDomain 
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if C has Field
- from EuclideanDomain 
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if C has Field
- from GcdDomain 
- integrate: % -> % if C has Algebra Fraction Integer
- integrate: (%, Symbol) -> % if C has variables: C -> List Symbol and C has Algebra Fraction Integer and C has integrate: (C, Symbol) -> C
- inv: % -> % if C has Field
- from DivisionRing 
- latex: % -> String
- from SetCategory 
- laurent: (Integer, QEtaTaylorSeries C) -> %
- from QEtaLaurentSeriesCategory C 
- laurent: (Integer, Stream C) -> %
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if C has Field
- from LeftOreRing 
- leadingCoefficient: % -> C
- from PowerSeriesCategory(C, Integer, SingletonAsOrderedSet) 
- leadingMonomial: % -> %
- from PowerSeriesCategory(C, Integer, SingletonAsOrderedSet) 
- leadingSupport: % -> Integer
- from IndexedProductCategory(C, Integer) 
- leadingTerm: % -> Record(k: Integer, c: C)
- from IndexedProductCategory(C, Integer) 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- map: (C -> C, %) -> %
- from IndexedProductCategory(C, Integer) 
- mapn: ((C, Integer) -> C, %, Integer) -> %
- from QEtaLaurentSeriesCategory C 
- monomial?: % -> Boolean
- from IndexedProductCategory(C, Integer) 
- monomial: (C, Integer) -> %
- from IndexedProductCategory(C, Integer) 
- multiEuclidean: (List %, %) -> Union(List %, failed) if C has Field
- from EuclideanDomain 
- multiplyCoefficients: (Integer -> C, %) -> %
- multiplyExponents: (%, PositiveInteger) -> %
- from UnivariatePowerSeriesCategory(C, Integer) 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- order: % -> Integer
- from UnivariatePowerSeriesCategory(C, Integer) 
- order: (%, Integer) -> Integer
- from UnivariatePowerSeriesCategory(C, Integer) 
- plenaryPower: (%, PositiveInteger) -> %
- from NonAssociativeAlgebra % 
- pole?: % -> Boolean
- from PowerSeriesCategory(C, Integer, SingletonAsOrderedSet) 
- principalIdeal: List % -> Record(coef: List %, generator: %) if C has Field
- from PrincipalIdealDomain 
- qetaCoefficient: (%, Integer) -> C
- from QEtaGradedAlgebra C 
- qetaGrade: % -> Integer
- from QEtaGradedAlgebra C 
- qetaLeadingCoefficient: % -> C
- from QEtaGradedAlgebra C 
- qetaTaylorRep: % -> QEtaTaylorSeries C
- qetaTaylorRep(x)returns the underlying Taylor representation of the Laurent serires. This might return a Taylor series that has 0 as its constant coefficient.
- quo: (%, %) -> % if C has Field
- from EuclideanDomain 
- rationalFunction: (%, Integer) -> Fraction Polynomial C if C has IntegralDomain
- rationalFunction: (%, Integer, Integer) -> Fraction Polynomial C if C has IntegralDomain
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- reductum: % -> %
- from IndexedProductCategory(C, Integer) 
- rem: (%, %) -> % if C has Field
- from EuclideanDomain 
- removeZeroes: % -> %
- from QEtaLaurentSeriesCategory C 
- removeZeroes: (Integer, %) -> %
- from QEtaLaurentSeriesCategory C 
- retract: % -> QEtaTaylorSeries C
- from RetractableTo QEtaTaylorSeries C 
- retractIfCan: % -> Union(QEtaTaylorSeries C, failed)
- from RetractableTo QEtaTaylorSeries C 
- revert: % -> %
- from QEtaLaurentSeriesCategory C 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from MagmaWithUnit 
- sizeLess?: (%, %) -> Boolean if C has Field
- from EuclideanDomain 
- sqrt: % -> % if C has Algebra Fraction Integer
- from RadicalCategory 
- squareFree: % -> Factored % if C has Field
- squareFreePart: % -> % if C has Field
- subtractIfCan: (%, %) -> Union(%, failed)
- terms: % -> Stream Record(k: Integer, c: C)
- from UnivariatePowerSeriesCategory(C, Integer) 
- traceout: NonNegativeInteger -> % -> OutputForm
- from QEtaAlgebra C 
- truncate: (%, Integer) -> %
- from UnivariatePowerSeriesCategory(C, Integer) 
- truncate: (%, Integer, Integer) -> %
- from UnivariatePowerSeriesCategory(C, Integer) 
- unit?: % -> Boolean if C has IntegralDomain
- from EntireRing 
- unitCanonical: % -> % if C has IntegralDomain
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if C has IntegralDomain
- from EntireRing 
- variable: % -> Symbol
- from UnivariatePowerSeriesCategory(C, Integer) 
- zero?: % -> Boolean
- from QEtaAlgebra C 
Algebra %
Algebra C
Algebra Fraction Integer if C has Algebra Fraction Integer
ArcHyperbolicFunctionCategory if C has Algebra Fraction Integer
ArcTrigonometricFunctionCategory if C has Algebra Fraction Integer
BiModule(%, %)
BiModule(C, C)
BiModule(Fraction Integer, Fraction Integer) if C has Algebra Fraction Integer
canonicalsClosed if C has Field
canonicalUnitNormal if C has Field
CharacteristicNonZero if C has CharacteristicNonZero
CharacteristicZero if C has CharacteristicZero
CoercibleFrom QEtaTaylorSeries C
DifferentialRing if C has *: (Integer, C) -> C
DivisionRing if C has Field
ElementaryFunctionCategory if C has Algebra Fraction Integer
Eltable(%, %)
EntireRing if C has IntegralDomain
EuclideanDomain if C has Field
HyperbolicFunctionCategory if C has Algebra Fraction Integer
IndexedProductCategory(C, Integer)
IntegralDomain if C has IntegralDomain
LeftModule Fraction Integer if C has Algebra Fraction Integer
LeftOreRing if C has Field
Module %
Module C
Module Fraction Integer if C has Algebra Fraction Integer
NonAssociativeAlgebra Fraction Integer if C has Algebra Fraction Integer
noZeroDivisors if C has IntegralDomain
PartialDifferentialRing Symbol if C has PartialDifferentialRing Symbol and C has *: (Integer, C) -> C
PowerSeriesCategory(C, Integer, SingletonAsOrderedSet)
PrincipalIdealDomain if C has Field
RadicalCategory if C has Algebra Fraction Integer
RetractableTo QEtaTaylorSeries C
RightModule Fraction Integer if C has Algebra Fraction Integer
TranscendentalFunctionCategory if C has Algebra Fraction Integer
TrigonometricFunctionCategory if C has Algebra Fraction Integer
UniqueFactorizationDomain if C has Field
UnivariateLaurentSeriesCategory C
UnivariatePowerSeriesCategory(C, Integer)