ModularFunctionQSeriesConstructor(C, L, gammas)ΒΆ

qetamodfunqseries.spad line 162 [edit on github]

ModularFunctionQSeriesConstructor(C, L, gammas) represents the algebra of eta-quotients that are modular functions for a certain modular group and have only poles at the given cusps (given by explicit transformation matrices gammas). The domain is meant to handle modular functions (weight 0), but can hold (and do arithmetic with) modular forms. However, the function zero? assumes that the object is a modular function, i.e. will return 0 for modular cusp forms.

0: %

from QEtaAlgebra C

1: %

from QEtaAlgebra C

*: (%, %) -> %

from QEtaAlgebra C

*: (C, %) -> %

from QEtaAlgebra C

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from QEtaAlgebra C

-: % -> %

from QEtaAlgebra C

-: (%, %) -> %

from QEtaAlgebra C

/: (%, %) -> % if C has Field

from QEtaPowerGradedAlgebra C

=: (%, %) -> Boolean

from BasicType

^: (%, NonNegativeInteger) -> %

from QEtaAlgebra C

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: XHashTable(Matrix Integer, L) -> %

If t is a hashtable containing (for each gamma of gammas) the respective series expansions at that gamma, then coerce(t) creates a data structure that can be used for computations as a C-algebra.

elt: (%, PositiveInteger) -> L

from ModularFunctionQSeriesCategory(C, L)

latex: % -> String

from SetCategory

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

maxIndex: () -> PositiveInteger

from QEtaPowerGradedAlgebra C

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

qetaGrade: (%, PositiveInteger) -> Integer

from QEtaPowerGradedAlgebra C

qetaGrade: (%, PositiveInteger, Integer) -> Integer

from QEtaPowerGradedAlgebra C

qetaGrades: % -> List Integer

from QEtaPowerGradedAlgebra C

qetaIndex: % -> PositiveInteger

from QEtaPowerGradedAlgebra C

qetaLeadingCoefficient: (%, PositiveInteger) -> C

from QEtaPowerGradedAlgebra C

recip: % -> Union(%, failed)

from MagmaWithUnit

removeZeroes: % -> %

from ModularFunctionQSeriesCategory(C, L)

removeZeroes: (Integer, %) -> %

from ModularFunctionQSeriesCategory(C, L)

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from MagmaWithUnit

series: (%, PositiveInteger) -> L

from ModularFunctionQSeriesCategory(C, L)

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

traceout: NonNegativeInteger -> % -> OutputForm

from QEtaAlgebra C

zero?: % -> Boolean

from QEtaAlgebra C

AbelianGroup

AbelianMonoid

AbelianSemiGroup

BasicType

CancellationAbelianMonoid

CoercibleTo OutputForm

Magma

MagmaWithUnit

ModularFunctionQSeriesCategory(C, L)

Monoid

QEtaAlgebra C

QEtaPowerGradedAlgebra C

SemiGroup

SetCategory