QEtaPowerGradedAlgebra CΒΆ
qetaalg.spad line 178 [edit on github]
A domain implementing QEtaPowerGradedAlgebra(C) is supposed to work like the direct product of n=maxIndex() copies of a QEtaAlgebra.
- 0: %
from QEtaAlgebra C
- 1: %
from QEtaAlgebra C
- *: (%, %) -> %
from QEtaAlgebra C
- *: (C, %) -> %
from QEtaAlgebra C
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from QEtaAlgebra C
- -: % -> %
from QEtaAlgebra C
- -: (%, %) -> %
from QEtaAlgebra C
- /: (%, %) -> % if C has Field
Division. It
'sdangerous, because sums of eta-quotients might have zeros so that inverses of such function usually have poles not only at the cusps ofGamma_0(m).
- ^: (%, NonNegativeInteger) -> %
from QEtaAlgebra C
- ^: (%, PositiveInteger) -> %
from Magma
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- maxIndex: () -> PositiveInteger
maxIndex()returns the number of components of this domain.
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- qetaGrade: (%, PositiveInteger) -> Integer
qetaGrade(x, k)returns the grade with the first nonzero entry in thek-th component. If the grade is not bounded from below this function might run into an infinite loop. qetaGrade(0,k) is undefined.
- qetaGrade: (%, PositiveInteger, Integer) -> Integer
qetaGrade(x, k, mn)returns the maximum of qetaGrade(x,k) andmn. In particular, qetaGrade(0,k,mn)=mn.
- qetaGrades: % -> List Integer
qetaGrades(x)returns [qetaGrade(x,k) forkin 1..maxIndex())] for nonzeroxand [-1forkin 1..maxIndex()] forx=0.
- qetaIndex: % -> PositiveInteger
qetaIndex(x)for nonzeroxreturnsksuch that qetaGrade(x,k) = max [qetaGrade(x,j) forjin 1..maxIndex()] andkis minimal with this property. qetaIndex(0) is undefined.
- qetaLeadingCoefficient: (%, PositiveInteger) -> C
qetaLeadingCoefficient(x, k)returns the coefficient in thek-th component corresponding to qetaGrade(x). The qetaLeadingCoefficient of 0 is undefined.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from MagmaWithUnit
- subtractIfCan: (%, %) -> Union(%, failed)
- traceout: NonNegativeInteger -> % -> OutputForm
from QEtaAlgebra C
- zero?: % -> Boolean
from QEtaAlgebra C