QEtaPowerAlgebraBasisCategory F¶
qetapowersamba.spad line 393 [edit on github]
- F: Type 
QEtaPowerAlgebraBasisCategory(F) is a category for a data structure that can be used for reduction modulo an algebra basis (samba basis).
- basisElements: % -> Vector XHashTable(Integer, List F)
- basisElements(x)returns the basis elements that are stored in the structure- x.
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- component: (F, XHashTable(PositiveInteger, PositiveInteger)) -> Integer
- Let - k= qetaIndex(- u),- g- :=grade(- u,- k), and- I= sort(keys idx). component(- u, idx) returns- cwhere- cis- -kif empty?(- I).- cis the idx(max(- J)) if- J= [- ifor- iin- I| grade(- u,- k) = grade(- u, idx.- i)] is nonempty. If- Jis empty, then- c=- -kotherwise.
- indexPermutation: % -> XHashTable(PositiveInteger, PositiveInteger)
- indexPermutaion( - x) returns a computed permutation of the component indices of- Fso that it fit best during the computation. The reduction and creation of the basis according to the theory is done from i=n down to- i=1where n=maxIndex() of- F, i.e. the grade in the last component will be reduced first. indexPermutation(- x).- nthen gives the actual component index that corresponds to “last”. By this dynamical reordering we try to keep the grades small.
- initialize: List F -> %
- initialize(m)creates an initial basis.
- multipliers: % -> XHashTable(PositiveInteger, F)
- multipliers(x)returns the elements by which it can be multiplied with an arbitrary positive power.